Edit model card

resnet101-base_tobacco

This model is a fine-tuned version of microsoft/resnet-101 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6332
  • Accuracy: 0.435
  • Brier Loss: 0.6886
  • Nll: 4.4967
  • F1 Micro: 0.435
  • F1 Macro: 0.2876
  • Ece: 0.2482
  • Aurc: 0.3432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 13 2.3065 0.06 0.9008 7.5257 0.06 0.0563 0.1444 0.9505
No log 2.0 26 2.3098 0.075 0.9014 8.6176 0.075 0.0468 0.1535 0.9485
No log 3.0 39 2.3082 0.09 0.9011 7.8490 0.09 0.0647 0.1662 0.9336
No log 4.0 52 2.3056 0.12 0.9006 7.6932 0.12 0.0809 0.1814 0.8887
No log 5.0 65 2.3004 0.125 0.8995 7.1356 0.125 0.0750 0.1841 0.8198
No log 6.0 78 2.2921 0.155 0.8979 5.9637 0.155 0.0706 0.2036 0.7930
No log 7.0 91 2.2917 0.165 0.8978 5.7926 0.165 0.0785 0.2139 0.8056
No log 8.0 104 2.2842 0.185 0.8963 4.7947 0.185 0.0595 0.2244 0.8344
No log 9.0 117 2.2742 0.215 0.8942 4.4573 0.2150 0.0830 0.2424 0.7961
No log 10.0 130 2.2638 0.2 0.8921 4.8564 0.2000 0.0554 0.2376 0.7663
No log 11.0 143 2.2530 0.215 0.8898 5.0772 0.2150 0.0740 0.2467 0.7908
No log 12.0 156 2.2479 0.19 0.8888 5.3276 0.19 0.0421 0.2220 0.7856
No log 13.0 169 2.2406 0.18 0.8873 5.2973 0.18 0.0308 0.2248 0.8007
No log 14.0 182 2.2202 0.285 0.8826 5.4657 0.285 0.1167 0.2855 0.6743
No log 15.0 195 2.2085 0.29 0.8801 5.7797 0.29 0.1154 0.2909 0.6660
No log 16.0 208 2.1850 0.305 0.8742 5.7600 0.305 0.1194 0.3063 0.4897
No log 17.0 221 2.2017 0.18 0.8789 5.7405 0.18 0.0306 0.2309 0.7654
No log 18.0 234 2.1998 0.18 0.8784 5.8985 0.18 0.0305 0.2377 0.7525
No log 19.0 247 2.1429 0.285 0.8640 5.9614 0.285 0.1117 0.2970 0.5007
No log 20.0 260 2.1240 0.315 0.8587 5.9916 0.315 0.1232 0.3057 0.4288
No log 21.0 273 2.0986 0.305 0.8513 5.9764 0.305 0.1166 0.3001 0.4526
No log 22.0 286 2.0909 0.315 0.8494 5.9914 0.315 0.1234 0.3062 0.4385
No log 23.0 299 2.0451 0.295 0.8313 6.1078 0.295 0.1115 0.2901 0.4619
No log 24.0 312 2.0662 0.3 0.8413 6.1029 0.3 0.1168 0.3014 0.4544
No log 25.0 325 2.0235 0.3 0.8238 6.1798 0.3 0.1156 0.2885 0.4553
No log 26.0 338 2.0669 0.305 0.8439 6.2056 0.305 0.1207 0.3046 0.4579
No log 27.0 351 2.0223 0.315 0.8256 6.1083 0.315 0.1232 0.2860 0.4308
No log 28.0 364 2.1075 0.185 0.8574 6.0867 0.185 0.0370 0.2317 0.7416
No log 29.0 377 1.9127 0.295 0.7709 6.1567 0.295 0.1155 0.2464 0.4630
No log 30.0 390 1.9407 0.315 0.7889 6.1398 0.315 0.1283 0.2696 0.4244
No log 31.0 403 1.9099 0.305 0.7737 6.1311 0.305 0.1216 0.2626 0.4441
No log 32.0 416 1.9071 0.31 0.7731 6.1004 0.31 0.1237 0.2803 0.4387
No log 33.0 429 1.9097 0.31 0.7774 6.1658 0.31 0.1212 0.2701 0.4328
No log 34.0 442 1.9008 0.3 0.7724 6.2049 0.3 0.1180 0.2415 0.4452
No log 35.0 455 2.0340 0.275 0.8382 5.8659 0.275 0.1095 0.2873 0.6352
No log 36.0 468 1.9324 0.315 0.7937 6.0328 0.315 0.1248 0.2865 0.4177
No log 37.0 481 2.0698 0.18 0.8483 6.1172 0.18 0.0306 0.2448 0.7024
No log 38.0 494 1.8436 0.3 0.7492 6.1508 0.3 0.1192 0.2461 0.4406
2.0752 39.0 507 1.8504 0.31 0.7556 6.0528 0.31 0.1222 0.2696 0.4355
2.0752 40.0 520 1.8523 0.315 0.7582 6.0492 0.315 0.1245 0.2522 0.4341
2.0752 41.0 533 1.8858 0.305 0.7785 6.1136 0.305 0.1244 0.2756 0.4559
2.0752 42.0 546 1.8466 0.305 0.7594 5.9124 0.305 0.1205 0.2739 0.4469
2.0752 43.0 559 1.9921 0.195 0.8300 5.6106 0.195 0.0490 0.2368 0.7141
2.0752 44.0 572 1.8133 0.31 0.7447 5.6505 0.31 0.1242 0.2708 0.4189
2.0752 45.0 585 1.8022 0.32 0.7397 5.6263 0.32 0.1324 0.2557 0.4213
2.0752 46.0 598 1.8361 0.32 0.7599 5.6068 0.32 0.1281 0.2719 0.4239
2.0752 47.0 611 1.7972 0.32 0.7376 5.8954 0.32 0.1306 0.2418 0.4311
2.0752 48.0 624 1.7850 0.325 0.7357 5.8208 0.325 0.1397 0.2528 0.3984
2.0752 49.0 637 1.7808 0.315 0.7332 5.5883 0.315 0.1325 0.2551 0.4255
2.0752 50.0 650 1.7838 0.31 0.7338 5.6850 0.31 0.1314 0.2530 0.4247
2.0752 51.0 663 1.7767 0.305 0.7316 5.4974 0.305 0.1241 0.2515 0.4253
2.0752 52.0 676 1.7607 0.32 0.7263 5.3077 0.32 0.1321 0.2458 0.4148
2.0752 53.0 689 1.7486 0.32 0.7224 5.1734 0.32 0.1355 0.2510 0.4190
2.0752 54.0 702 1.7693 0.33 0.7323 5.1578 0.33 0.1446 0.2638 0.3970
2.0752 55.0 715 1.7476 0.325 0.7235 5.1481 0.325 0.1602 0.2285 0.4140
2.0752 56.0 728 1.7384 0.31 0.7189 5.3248 0.31 0.1507 0.2295 0.4202
2.0752 57.0 741 1.7454 0.32 0.7228 5.2669 0.32 0.1575 0.2602 0.4218
2.0752 58.0 754 1.8063 0.33 0.7551 5.0652 0.33 0.1574 0.2835 0.4092
2.0752 59.0 767 1.7466 0.34 0.7237 4.9430 0.34 0.1783 0.2729 0.4124
2.0752 60.0 780 1.7240 0.345 0.7166 5.0165 0.345 0.1776 0.2397 0.4118
2.0752 61.0 793 1.7105 0.325 0.7126 5.0261 0.325 0.1647 0.2564 0.4149
2.0752 62.0 806 1.7078 0.345 0.7157 5.0160 0.345 0.1797 0.2612 0.4013
2.0752 63.0 819 1.7982 0.305 0.7575 4.9876 0.305 0.1614 0.2733 0.4650
2.0752 64.0 832 1.8072 0.33 0.7635 5.0080 0.33 0.1954 0.2928 0.4487
2.0752 65.0 845 1.7201 0.35 0.7180 4.8708 0.35 0.2071 0.2445 0.4114
2.0752 66.0 858 1.7131 0.335 0.7167 4.9248 0.335 0.1936 0.2531 0.4223
2.0752 67.0 871 1.7071 0.345 0.7138 4.8657 0.345 0.1948 0.2664 0.4128
2.0752 68.0 884 1.7022 0.36 0.7128 4.7996 0.36 0.2147 0.2443 0.4023
2.0752 69.0 897 1.6859 0.37 0.7055 4.7318 0.37 0.2296 0.2577 0.3909
2.0752 70.0 910 1.6860 0.37 0.7038 4.8293 0.37 0.2314 0.2594 0.3894
2.0752 71.0 923 1.6823 0.36 0.7038 4.7070 0.36 0.2170 0.2485 0.3934
2.0752 72.0 936 1.7656 0.335 0.7457 4.8009 0.335 0.2035 0.2760 0.4503
2.0752 73.0 949 1.8235 0.32 0.7754 4.7280 0.32 0.2028 0.2752 0.5244
2.0752 74.0 962 1.6878 0.37 0.7073 4.7660 0.37 0.2290 0.2455 0.3996
2.0752 75.0 975 1.6717 0.365 0.7003 4.7709 0.3650 0.2209 0.2404 0.3906
2.0752 76.0 988 1.6610 0.365 0.6972 4.6921 0.3650 0.2223 0.2640 0.3910
1.6288 77.0 1001 1.6740 0.4 0.7016 4.6791 0.4000 0.2519 0.2794 0.3693
1.6288 78.0 1014 1.6792 0.385 0.7048 4.7411 0.3850 0.2434 0.2594 0.3913
1.6288 79.0 1027 1.6752 0.395 0.7030 4.5595 0.395 0.2608 0.2906 0.3887
1.6288 80.0 1040 1.6554 0.395 0.6951 4.5213 0.395 0.2653 0.2696 0.3821
1.6288 81.0 1053 1.6688 0.385 0.7013 4.5993 0.3850 0.2441 0.2614 0.3886
1.6288 82.0 1066 1.6892 0.35 0.7121 4.6296 0.35 0.2187 0.2701 0.4067
1.6288 83.0 1079 1.6691 0.4 0.7031 4.5448 0.4000 0.2570 0.2845 0.3756
1.6288 84.0 1092 1.6544 0.39 0.6946 4.6295 0.39 0.2357 0.2522 0.3806
1.6288 85.0 1105 1.6592 0.395 0.6983 4.4632 0.395 0.2515 0.2793 0.3815
1.6288 86.0 1118 1.6526 0.4 0.6945 4.5685 0.4000 0.2579 0.2527 0.3781
1.6288 87.0 1131 1.6558 0.4 0.6968 4.5767 0.4000 0.2623 0.2435 0.3804
1.6288 88.0 1144 1.6507 0.395 0.6961 4.5355 0.395 0.2390 0.2554 0.3710
1.6288 89.0 1157 1.6462 0.4 0.6941 4.5278 0.4000 0.2525 0.2406 0.3704
1.6288 90.0 1170 1.6490 0.39 0.6954 4.5513 0.39 0.2430 0.2497 0.3700
1.6288 91.0 1183 1.6568 0.405 0.6980 4.5792 0.405 0.2545 0.2584 0.3675
1.6288 92.0 1196 1.6421 0.41 0.6909 4.5731 0.41 0.2666 0.2527 0.3609
1.6288 93.0 1209 1.6489 0.405 0.6952 4.3408 0.405 0.2695 0.2738 0.3716
1.6288 94.0 1222 1.6440 0.41 0.6933 4.3845 0.41 0.2713 0.2629 0.3619
1.6288 95.0 1235 1.6411 0.435 0.6919 4.4244 0.435 0.2878 0.2634 0.3516
1.6288 96.0 1248 1.6391 0.41 0.6918 4.4251 0.41 0.2628 0.2655 0.3743
1.6288 97.0 1261 1.6341 0.42 0.6893 4.4415 0.4200 0.2761 0.2549 0.3598
1.6288 98.0 1274 1.6476 0.415 0.6952 4.5149 0.415 0.2778 0.2385 0.3639
1.6288 99.0 1287 1.6463 0.42 0.6939 4.5027 0.4200 0.2792 0.2806 0.3593
1.6288 100.0 1300 1.6332 0.435 0.6886 4.4967 0.435 0.2876 0.2482 0.3432

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/resnet101-base_tobacco

Finetuned
(8)
this model
Finetunes
7 models