resnet101_rvl-cdip / README.md
bdpc's picture
Saving best model to hub
52c2443
metadata
license: apache-2.0
base_model: microsoft/resnet-101
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: resnet101_rvl-cdip
    results: []

resnet101_rvl-cdip

This model is a fine-tuned version of microsoft/resnet-101 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6158
  • Accuracy: 0.8210
  • Brier Loss: 0.2556
  • Nll: 1.7696
  • F1 Micro: 0.8210
  • F1 Macro: 0.8209
  • Ece: 0.0176
  • Aurc: 0.0418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
1.3521 1.0 5000 1.2626 0.6133 0.5108 2.7262 0.6133 0.6042 0.0455 0.1644
0.942 2.0 10000 0.9005 0.7318 0.3723 2.2139 0.7318 0.7293 0.0174 0.0862
0.7983 3.0 15000 0.7691 0.7723 0.3198 2.0444 0.7723 0.7714 0.0139 0.0641
0.7167 4.0 20000 0.7048 0.7924 0.2931 1.9414 0.7924 0.7931 0.0135 0.0541
0.6656 5.0 25000 0.6658 0.8052 0.2770 1.8581 0.8052 0.8056 0.0108 0.0486
0.6252 6.0 30000 0.6415 0.8117 0.2670 1.8157 0.8117 0.8112 0.0128 0.0455
0.6038 7.0 35000 0.6269 0.8176 0.2607 1.7833 0.8176 0.8180 0.0144 0.0432
0.5784 8.0 40000 0.6217 0.8195 0.2583 1.7723 0.8195 0.8195 0.0151 0.0425
0.5583 9.0 45000 0.6150 0.8214 0.2553 1.7719 0.8214 0.8214 0.0164 0.0415
0.5519 10.0 50000 0.6158 0.8210 0.2556 1.7696 0.8210 0.8209 0.0176 0.0418

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3