Edit model card

MAE-CT-M1N0-M12_v8_split2_v3

This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5210
  • Accuracy: 0.7808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10500

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6593 0.0068 71 0.6615 0.6301
0.6079 1.0068 142 0.6573 0.6301
0.6428 2.0068 213 0.6510 0.6301
0.7179 3.0068 284 0.6321 0.6301
0.6131 4.0068 355 0.6464 0.6301
0.6769 5.0068 426 0.5554 0.6712
0.7054 6.0068 497 0.5056 0.7534
0.758 7.0068 568 0.5272 0.7397
0.5288 8.0068 639 0.5494 0.6986
0.3878 9.0068 710 0.5180 0.7260
0.2466 10.0068 781 0.7316 0.6986
0.8338 11.0068 852 1.1721 0.6712
0.603 12.0068 923 0.7357 0.7534
0.2309 13.0068 994 1.1961 0.6986
0.2656 14.0068 1065 1.1105 0.7123
0.5578 15.0068 1136 1.3217 0.7123
0.2875 16.0068 1207 1.2618 0.6986
0.4332 17.0068 1278 1.3750 0.7260
0.4794 18.0068 1349 1.5369 0.7260
0.3151 19.0068 1420 1.2066 0.7397
0.2433 20.0068 1491 1.6149 0.6986
0.1373 21.0068 1562 1.6916 0.7397
0.0864 22.0068 1633 2.3674 0.6849
0.2188 23.0068 1704 2.4041 0.6712
0.089 24.0068 1775 1.8638 0.7123
0.0911 25.0068 1846 2.0675 0.6986
0.137 26.0068 1917 1.8598 0.7123
0.1882 27.0068 1988 1.6897 0.7534
0.1562 28.0068 2059 2.6265 0.6849
0.0003 29.0068 2130 1.6721 0.6986
0.1783 30.0068 2201 2.0134 0.7260
0.0041 31.0068 2272 1.8352 0.7260
0.0001 32.0068 2343 2.3171 0.7123
0.0001 33.0068 2414 2.2544 0.6986
0.0443 34.0068 2485 2.0805 0.7260
0.0052 35.0068 2556 2.5061 0.6849
0.1231 36.0068 2627 2.2596 0.6438
0.0001 37.0068 2698 2.4168 0.7260
0.0001 38.0068 2769 2.4288 0.7123
0.0667 39.0068 2840 2.6743 0.6849
0.0001 40.0068 2911 2.4385 0.7123
0.0001 41.0068 2982 2.0221 0.7397
0.0561 42.0068 3053 2.1503 0.6712
0.005 43.0068 3124 3.0311 0.6575
0.0 44.0068 3195 2.2170 0.7260
0.2196 45.0068 3266 2.0672 0.6986
0.1848 46.0068 3337 2.5003 0.6575
0.2445 47.0068 3408 2.0344 0.6849
0.3096 48.0068 3479 2.4040 0.6986
0.0 49.0068 3550 2.3224 0.7123
0.0 50.0068 3621 2.6102 0.6849
0.2334 51.0068 3692 3.0010 0.6849
0.0001 52.0068 3763 2.2647 0.7397
0.0001 53.0068 3834 2.2806 0.7123
0.0 54.0068 3905 2.5543 0.7260
0.0 55.0068 3976 2.6203 0.6986
0.2117 56.0068 4047 2.5486 0.6849
0.0001 57.0068 4118 2.2072 0.6986
0.0001 58.0068 4189 2.4930 0.6986
0.0001 59.0068 4260 2.3262 0.7123
0.3114 60.0068 4331 3.0585 0.6575
0.0001 61.0068 4402 2.0491 0.7260
0.0057 62.0068 4473 2.0623 0.7397
0.0 63.0068 4544 2.5215 0.6986
0.0319 64.0068 4615 2.4648 0.7123
0.2879 65.0068 4686 2.4885 0.6712
0.0001 66.0068 4757 1.8654 0.6986
0.0001 67.0068 4828 2.3100 0.6986
0.0001 68.0068 4899 2.0873 0.7260
0.1614 69.0068 4970 2.0189 0.7260
0.0001 70.0068 5041 2.5160 0.7123
0.0114 71.0068 5112 2.0018 0.7260
0.0823 72.0068 5183 2.2905 0.7260
0.0001 73.0068 5254 2.2782 0.7260
0.0 74.0068 5325 2.4495 0.6986
0.3044 75.0068 5396 2.4417 0.7123
0.0 76.0068 5467 2.5168 0.6849
0.0007 77.0068 5538 2.9406 0.6986
0.0001 78.0068 5609 2.6533 0.7123
0.0 79.0068 5680 2.4312 0.6986
0.0 80.0068 5751 2.5024 0.7123
0.0 81.0068 5822 2.4178 0.6986
0.0 82.0068 5893 2.5872 0.7123
0.0 83.0068 5964 2.0274 0.7671
0.1991 84.0068 6035 2.5663 0.6986
0.0 85.0068 6106 2.6205 0.6849
0.1705 86.0068 6177 2.7275 0.6575
0.0 87.0068 6248 2.9716 0.6438
0.0 88.0068 6319 2.9101 0.6438
0.0 89.0068 6390 2.4764 0.6986
0.0 90.0068 6461 2.5322 0.6986
0.0 91.0068 6532 2.7223 0.6986
0.0 92.0068 6603 2.6965 0.6849
0.0 93.0068 6674 2.6896 0.6849
0.0001 94.0068 6745 2.7115 0.7123
0.0 95.0068 6816 2.6126 0.6849
0.0 96.0068 6887 2.6572 0.6986
0.0 97.0068 6958 2.7067 0.6986
0.0 98.0068 7029 3.0455 0.6712
0.0 99.0068 7100 2.8097 0.6849
0.0 100.0068 7171 2.8568 0.6849
0.0 101.0068 7242 2.9188 0.6849
0.0 102.0068 7313 2.9678 0.6849
0.0 103.0068 7384 3.0187 0.6712
0.0 104.0068 7455 3.0423 0.6712
0.0 105.0068 7526 3.0592 0.6712
0.0 106.0068 7597 3.0764 0.6712
0.0 107.0068 7668 3.0949 0.6712
0.0 108.0068 7739 3.1251 0.6712
0.0 109.0068 7810 3.1508 0.6712
0.0 110.0068 7881 2.7330 0.6986
0.0 111.0068 7952 2.5366 0.7534
0.0 112.0068 8023 2.7911 0.7123
0.0 113.0068 8094 2.6362 0.7260
0.0 114.0068 8165 2.4667 0.6849
0.0 115.0068 8236 2.5247 0.6849
0.0 116.0068 8307 2.6152 0.6712
0.0 117.0068 8378 2.6153 0.7260
0.0 118.0068 8449 2.5005 0.7397
0.0 119.0068 8520 2.5096 0.7397
0.0 120.0068 8591 2.5173 0.7397
0.0 121.0068 8662 2.5226 0.7397
0.0 122.0068 8733 2.5313 0.7397
0.0 123.0068 8804 2.6165 0.7397
0.0 124.0068 8875 2.4491 0.7260
0.0 125.0068 8946 2.3421 0.7671
0.0 126.0068 9017 2.3381 0.7671
0.0 127.0068 9088 2.3615 0.7671
0.0 128.0068 9159 2.4429 0.7534
0.0 129.0068 9230 2.6266 0.7397
0.0 130.0068 9301 2.6281 0.7397
0.0 131.0068 9372 2.6321 0.7260
0.0 132.0068 9443 2.6350 0.7260
0.0 133.0068 9514 2.5210 0.7808
0.0 134.0068 9585 2.5572 0.7671
0.0 135.0068 9656 2.5419 0.7671
0.0 136.0068 9727 2.5428 0.7534
0.0 137.0068 9798 2.5649 0.7534
0.0 138.0068 9869 2.7969 0.7123
0.0 139.0068 9940 2.8026 0.7123
0.0 140.0068 10011 2.8066 0.7123
0.0 141.0068 10082 2.6293 0.7397
0.0 142.0068 10153 2.6859 0.7260
0.0 143.0068 10224 2.6886 0.7260
0.0 144.0068 10295 2.7223 0.7260
0.0 145.0068 10366 2.7872 0.7260
0.0 146.0068 10437 2.7887 0.7260
0.0 147.006 10500 2.7888 0.7260

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.0.1+cu117
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
4
Safetensors
Model size
304M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for beingbatman/MAE-CT-M1N0-M12_v8_split2_v3

Finetuned
(16)
this model