beingbatman commited on
Commit
2a260a8
1 Parent(s): fc3c85c

Model save

Browse files
Files changed (2) hide show
  1. README.md +209 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: MCG-NJU/videomae-large-finetuned-kinetics
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: MAE-CT-M1N0-M12_v8_split2_v3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # MAE-CT-M1N0-M12_v8_split2_v3
18
+
19
+ This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.5210
22
+ - Accuracy: 0.7808
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-05
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 10500
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:--------:|:-----:|:---------------:|:--------:|
54
+ | 0.6593 | 0.0068 | 71 | 0.6615 | 0.6301 |
55
+ | 0.6079 | 1.0068 | 142 | 0.6573 | 0.6301 |
56
+ | 0.6428 | 2.0068 | 213 | 0.6510 | 0.6301 |
57
+ | 0.7179 | 3.0068 | 284 | 0.6321 | 0.6301 |
58
+ | 0.6131 | 4.0068 | 355 | 0.6464 | 0.6301 |
59
+ | 0.6769 | 5.0068 | 426 | 0.5554 | 0.6712 |
60
+ | 0.7054 | 6.0068 | 497 | 0.5056 | 0.7534 |
61
+ | 0.758 | 7.0068 | 568 | 0.5272 | 0.7397 |
62
+ | 0.5288 | 8.0068 | 639 | 0.5494 | 0.6986 |
63
+ | 0.3878 | 9.0068 | 710 | 0.5180 | 0.7260 |
64
+ | 0.2466 | 10.0068 | 781 | 0.7316 | 0.6986 |
65
+ | 0.8338 | 11.0068 | 852 | 1.1721 | 0.6712 |
66
+ | 0.603 | 12.0068 | 923 | 0.7357 | 0.7534 |
67
+ | 0.2309 | 13.0068 | 994 | 1.1961 | 0.6986 |
68
+ | 0.2656 | 14.0068 | 1065 | 1.1105 | 0.7123 |
69
+ | 0.5578 | 15.0068 | 1136 | 1.3217 | 0.7123 |
70
+ | 0.2875 | 16.0068 | 1207 | 1.2618 | 0.6986 |
71
+ | 0.4332 | 17.0068 | 1278 | 1.3750 | 0.7260 |
72
+ | 0.4794 | 18.0068 | 1349 | 1.5369 | 0.7260 |
73
+ | 0.3151 | 19.0068 | 1420 | 1.2066 | 0.7397 |
74
+ | 0.2433 | 20.0068 | 1491 | 1.6149 | 0.6986 |
75
+ | 0.1373 | 21.0068 | 1562 | 1.6916 | 0.7397 |
76
+ | 0.0864 | 22.0068 | 1633 | 2.3674 | 0.6849 |
77
+ | 0.2188 | 23.0068 | 1704 | 2.4041 | 0.6712 |
78
+ | 0.089 | 24.0068 | 1775 | 1.8638 | 0.7123 |
79
+ | 0.0911 | 25.0068 | 1846 | 2.0675 | 0.6986 |
80
+ | 0.137 | 26.0068 | 1917 | 1.8598 | 0.7123 |
81
+ | 0.1882 | 27.0068 | 1988 | 1.6897 | 0.7534 |
82
+ | 0.1562 | 28.0068 | 2059 | 2.6265 | 0.6849 |
83
+ | 0.0003 | 29.0068 | 2130 | 1.6721 | 0.6986 |
84
+ | 0.1783 | 30.0068 | 2201 | 2.0134 | 0.7260 |
85
+ | 0.0041 | 31.0068 | 2272 | 1.8352 | 0.7260 |
86
+ | 0.0001 | 32.0068 | 2343 | 2.3171 | 0.7123 |
87
+ | 0.0001 | 33.0068 | 2414 | 2.2544 | 0.6986 |
88
+ | 0.0443 | 34.0068 | 2485 | 2.0805 | 0.7260 |
89
+ | 0.0052 | 35.0068 | 2556 | 2.5061 | 0.6849 |
90
+ | 0.1231 | 36.0068 | 2627 | 2.2596 | 0.6438 |
91
+ | 0.0001 | 37.0068 | 2698 | 2.4168 | 0.7260 |
92
+ | 0.0001 | 38.0068 | 2769 | 2.4288 | 0.7123 |
93
+ | 0.0667 | 39.0068 | 2840 | 2.6743 | 0.6849 |
94
+ | 0.0001 | 40.0068 | 2911 | 2.4385 | 0.7123 |
95
+ | 0.0001 | 41.0068 | 2982 | 2.0221 | 0.7397 |
96
+ | 0.0561 | 42.0068 | 3053 | 2.1503 | 0.6712 |
97
+ | 0.005 | 43.0068 | 3124 | 3.0311 | 0.6575 |
98
+ | 0.0 | 44.0068 | 3195 | 2.2170 | 0.7260 |
99
+ | 0.2196 | 45.0068 | 3266 | 2.0672 | 0.6986 |
100
+ | 0.1848 | 46.0068 | 3337 | 2.5003 | 0.6575 |
101
+ | 0.2445 | 47.0068 | 3408 | 2.0344 | 0.6849 |
102
+ | 0.3096 | 48.0068 | 3479 | 2.4040 | 0.6986 |
103
+ | 0.0 | 49.0068 | 3550 | 2.3224 | 0.7123 |
104
+ | 0.0 | 50.0068 | 3621 | 2.6102 | 0.6849 |
105
+ | 0.2334 | 51.0068 | 3692 | 3.0010 | 0.6849 |
106
+ | 0.0001 | 52.0068 | 3763 | 2.2647 | 0.7397 |
107
+ | 0.0001 | 53.0068 | 3834 | 2.2806 | 0.7123 |
108
+ | 0.0 | 54.0068 | 3905 | 2.5543 | 0.7260 |
109
+ | 0.0 | 55.0068 | 3976 | 2.6203 | 0.6986 |
110
+ | 0.2117 | 56.0068 | 4047 | 2.5486 | 0.6849 |
111
+ | 0.0001 | 57.0068 | 4118 | 2.2072 | 0.6986 |
112
+ | 0.0001 | 58.0068 | 4189 | 2.4930 | 0.6986 |
113
+ | 0.0001 | 59.0068 | 4260 | 2.3262 | 0.7123 |
114
+ | 0.3114 | 60.0068 | 4331 | 3.0585 | 0.6575 |
115
+ | 0.0001 | 61.0068 | 4402 | 2.0491 | 0.7260 |
116
+ | 0.0057 | 62.0068 | 4473 | 2.0623 | 0.7397 |
117
+ | 0.0 | 63.0068 | 4544 | 2.5215 | 0.6986 |
118
+ | 0.0319 | 64.0068 | 4615 | 2.4648 | 0.7123 |
119
+ | 0.2879 | 65.0068 | 4686 | 2.4885 | 0.6712 |
120
+ | 0.0001 | 66.0068 | 4757 | 1.8654 | 0.6986 |
121
+ | 0.0001 | 67.0068 | 4828 | 2.3100 | 0.6986 |
122
+ | 0.0001 | 68.0068 | 4899 | 2.0873 | 0.7260 |
123
+ | 0.1614 | 69.0068 | 4970 | 2.0189 | 0.7260 |
124
+ | 0.0001 | 70.0068 | 5041 | 2.5160 | 0.7123 |
125
+ | 0.0114 | 71.0068 | 5112 | 2.0018 | 0.7260 |
126
+ | 0.0823 | 72.0068 | 5183 | 2.2905 | 0.7260 |
127
+ | 0.0001 | 73.0068 | 5254 | 2.2782 | 0.7260 |
128
+ | 0.0 | 74.0068 | 5325 | 2.4495 | 0.6986 |
129
+ | 0.3044 | 75.0068 | 5396 | 2.4417 | 0.7123 |
130
+ | 0.0 | 76.0068 | 5467 | 2.5168 | 0.6849 |
131
+ | 0.0007 | 77.0068 | 5538 | 2.9406 | 0.6986 |
132
+ | 0.0001 | 78.0068 | 5609 | 2.6533 | 0.7123 |
133
+ | 0.0 | 79.0068 | 5680 | 2.4312 | 0.6986 |
134
+ | 0.0 | 80.0068 | 5751 | 2.5024 | 0.7123 |
135
+ | 0.0 | 81.0068 | 5822 | 2.4178 | 0.6986 |
136
+ | 0.0 | 82.0068 | 5893 | 2.5872 | 0.7123 |
137
+ | 0.0 | 83.0068 | 5964 | 2.0274 | 0.7671 |
138
+ | 0.1991 | 84.0068 | 6035 | 2.5663 | 0.6986 |
139
+ | 0.0 | 85.0068 | 6106 | 2.6205 | 0.6849 |
140
+ | 0.1705 | 86.0068 | 6177 | 2.7275 | 0.6575 |
141
+ | 0.0 | 87.0068 | 6248 | 2.9716 | 0.6438 |
142
+ | 0.0 | 88.0068 | 6319 | 2.9101 | 0.6438 |
143
+ | 0.0 | 89.0068 | 6390 | 2.4764 | 0.6986 |
144
+ | 0.0 | 90.0068 | 6461 | 2.5322 | 0.6986 |
145
+ | 0.0 | 91.0068 | 6532 | 2.7223 | 0.6986 |
146
+ | 0.0 | 92.0068 | 6603 | 2.6965 | 0.6849 |
147
+ | 0.0 | 93.0068 | 6674 | 2.6896 | 0.6849 |
148
+ | 0.0001 | 94.0068 | 6745 | 2.7115 | 0.7123 |
149
+ | 0.0 | 95.0068 | 6816 | 2.6126 | 0.6849 |
150
+ | 0.0 | 96.0068 | 6887 | 2.6572 | 0.6986 |
151
+ | 0.0 | 97.0068 | 6958 | 2.7067 | 0.6986 |
152
+ | 0.0 | 98.0068 | 7029 | 3.0455 | 0.6712 |
153
+ | 0.0 | 99.0068 | 7100 | 2.8097 | 0.6849 |
154
+ | 0.0 | 100.0068 | 7171 | 2.8568 | 0.6849 |
155
+ | 0.0 | 101.0068 | 7242 | 2.9188 | 0.6849 |
156
+ | 0.0 | 102.0068 | 7313 | 2.9678 | 0.6849 |
157
+ | 0.0 | 103.0068 | 7384 | 3.0187 | 0.6712 |
158
+ | 0.0 | 104.0068 | 7455 | 3.0423 | 0.6712 |
159
+ | 0.0 | 105.0068 | 7526 | 3.0592 | 0.6712 |
160
+ | 0.0 | 106.0068 | 7597 | 3.0764 | 0.6712 |
161
+ | 0.0 | 107.0068 | 7668 | 3.0949 | 0.6712 |
162
+ | 0.0 | 108.0068 | 7739 | 3.1251 | 0.6712 |
163
+ | 0.0 | 109.0068 | 7810 | 3.1508 | 0.6712 |
164
+ | 0.0 | 110.0068 | 7881 | 2.7330 | 0.6986 |
165
+ | 0.0 | 111.0068 | 7952 | 2.5366 | 0.7534 |
166
+ | 0.0 | 112.0068 | 8023 | 2.7911 | 0.7123 |
167
+ | 0.0 | 113.0068 | 8094 | 2.6362 | 0.7260 |
168
+ | 0.0 | 114.0068 | 8165 | 2.4667 | 0.6849 |
169
+ | 0.0 | 115.0068 | 8236 | 2.5247 | 0.6849 |
170
+ | 0.0 | 116.0068 | 8307 | 2.6152 | 0.6712 |
171
+ | 0.0 | 117.0068 | 8378 | 2.6153 | 0.7260 |
172
+ | 0.0 | 118.0068 | 8449 | 2.5005 | 0.7397 |
173
+ | 0.0 | 119.0068 | 8520 | 2.5096 | 0.7397 |
174
+ | 0.0 | 120.0068 | 8591 | 2.5173 | 0.7397 |
175
+ | 0.0 | 121.0068 | 8662 | 2.5226 | 0.7397 |
176
+ | 0.0 | 122.0068 | 8733 | 2.5313 | 0.7397 |
177
+ | 0.0 | 123.0068 | 8804 | 2.6165 | 0.7397 |
178
+ | 0.0 | 124.0068 | 8875 | 2.4491 | 0.7260 |
179
+ | 0.0 | 125.0068 | 8946 | 2.3421 | 0.7671 |
180
+ | 0.0 | 126.0068 | 9017 | 2.3381 | 0.7671 |
181
+ | 0.0 | 127.0068 | 9088 | 2.3615 | 0.7671 |
182
+ | 0.0 | 128.0068 | 9159 | 2.4429 | 0.7534 |
183
+ | 0.0 | 129.0068 | 9230 | 2.6266 | 0.7397 |
184
+ | 0.0 | 130.0068 | 9301 | 2.6281 | 0.7397 |
185
+ | 0.0 | 131.0068 | 9372 | 2.6321 | 0.7260 |
186
+ | 0.0 | 132.0068 | 9443 | 2.6350 | 0.7260 |
187
+ | 0.0 | 133.0068 | 9514 | 2.5210 | 0.7808 |
188
+ | 0.0 | 134.0068 | 9585 | 2.5572 | 0.7671 |
189
+ | 0.0 | 135.0068 | 9656 | 2.5419 | 0.7671 |
190
+ | 0.0 | 136.0068 | 9727 | 2.5428 | 0.7534 |
191
+ | 0.0 | 137.0068 | 9798 | 2.5649 | 0.7534 |
192
+ | 0.0 | 138.0068 | 9869 | 2.7969 | 0.7123 |
193
+ | 0.0 | 139.0068 | 9940 | 2.8026 | 0.7123 |
194
+ | 0.0 | 140.0068 | 10011 | 2.8066 | 0.7123 |
195
+ | 0.0 | 141.0068 | 10082 | 2.6293 | 0.7397 |
196
+ | 0.0 | 142.0068 | 10153 | 2.6859 | 0.7260 |
197
+ | 0.0 | 143.0068 | 10224 | 2.6886 | 0.7260 |
198
+ | 0.0 | 144.0068 | 10295 | 2.7223 | 0.7260 |
199
+ | 0.0 | 145.0068 | 10366 | 2.7872 | 0.7260 |
200
+ | 0.0 | 146.0068 | 10437 | 2.7887 | 0.7260 |
201
+ | 0.0 | 147.006 | 10500 | 2.7888 | 0.7260 |
202
+
203
+
204
+ ### Framework versions
205
+
206
+ - Transformers 4.46.2
207
+ - Pytorch 2.0.1+cu117
208
+ - Datasets 3.0.1
209
+ - Tokenizers 0.20.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3842d643835bb83a11cbf647d1dedacae2f5d99ae65b349a2377807dda6c37fe
3
  size 1215496208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d790f60c4ef1b7c7e52b26246aa30fbaf9e8971b9798791e75bd53242d943a1b
3
  size 1215496208