Versions

v1: SFT -- 7658aab7702e56d9f5fa3b33bf7adcdae92f536b

Example

from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "belyakoff/SmolLM2-360M-Instruct-FT"

device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

messages = [{"role": "user", "content": "Столица России?"}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
# Столица России — Москва. Это один из самых известных и культурно значимых городов в мире.

Limitations

Don't change system prompt. Changing system prompt will make the model go crazy.

Downloads last month
90
Safetensors
Model size
362M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for belyakoff/SmolLM2-360M-Instruct-FT

Finetuned
(18)
this model
Quantizations
2 models

Dataset used to train belyakoff/SmolLM2-360M-Instruct-FT