Contents

This repository contains:

  1. Half-Precision LoRA versions of https://huggingface.co/mhdang/dpo-sdxl-text2image-v1 and https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1.
  2. Full-Precision offset versions of https://huggingface.co/mhdang/dpo-sdxl-text2image-v1 and https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1.

Creation

LoRA

The LoRA were created using Kohya SS.

1.5: https://civitai.com/models/240850/sd15-direct-preference-optimization-dpo extracted from https://huggingface.co/fp16-guy/Stable-Diffusion-v1-5_fp16_cleaned/blob/main/sd_1.5.safetensors. XL: https://civitai.com/models/238319/sd-xl-dpo-finetune-direct-preference-optimization extracted from https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors

Offsets

The offsets were calculated in Pytorch using the following formula:

1.5: https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1/blob/main/unet/diffusion_pytorch_model.safetensors - https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/unet/diffusion_pytorch_model.bin XL: https://huggingface.co/mhdang/dpo-sdxl-text2image-v1/blob/main/unet/diffusion_pytorch_model.safetensors - https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/unet/diffusion_pytorch_model.safetensors

These can be added directly to any initialized UNet to inject DPO training into it. See the code below for usage (diffusers only.)

License

These models are derivces from all OpenRail++ models, and are licensed under OpenRail++ themselves.

Usage

Offsets

from __future__ import annotations

from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from diffusers.models import UNet2DConditionModel

def inject_dpo(unet: UNet2DConditionModel, dpo_offset_path: str, device: str, strict: bool = False) -> None:
  """
  Injects DPO weights directly into your UNet.

  Args:
      unet (`UNet2DConditionModel`)
          The initialized UNet from your pipeline.
      dpo_offset_path (`str`)
          The path to the `.safetensors` file downloaded from https://huggingface.co/benjamin-paine/sd-dpo-offsets/.
          Make sure you're using the right file for the right base model.
      strict (`bool`, *optional*)
          Whether or not to raise errors when a weight cannot be applied. Defaults to false.
  """
  from safetensors import safe_open
  with safe_open(dpo_offset_path, framework="pt", device=device) as f:
      for key in f.keys():
          key_parts = key.split(".")
          current_layer = unet
          for key_part in key_parts[:-1]:
              current_layer = getattr(current_layer, key_part, None)
              if current_layer is None:
                  break
              if current_layer is None:
                  if strict:
                      raise IOError(f"Couldn't find a layer to inject key {key} in.")
                  continue
              layer_param = getattr(current_layer, key_parts[-1], None)
              if layer_param is None:
                  if strict:
                      raise IOError(f"Couldn't get weight parameter for key {key}")
                  continue
              layer_param.data += f.get_tensor(key)

Now you can use this function like so:

from diffusers import StableDiffusionPipeline
import huggingface_hub
import torch

# load sdv15 pipeline
device = "cuda"
model_id = "Lykon/dreamshaper-8"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to(device)

# make image
prompt = "Two cats playing chess on a tree branch"
generator = torch.Generator(device=device)
generator.manual_seed(123456789)
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] 
image.save("cats_playing_chess.png")

# download DPO offsets
dpo_offset_path = huggingface_hub.hf_hub_download("benjamin-paine/sd-dpo-offsets", "sd_v15_unet_dpo_offset.safetensors")
# inject
inject_dpo(pipe.unet, dpo_offset_path, device)

# make image again
generator.manual_seed(123456789)
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] 
image.save("cats_playing_chess_dpo.png")

cats_playing_chess.png image/png

cats_playing_chess_dpo.png image/png

Or for XL:

from diffusers import StableDiffusionXLPipeline
import huggingface_hub
import torch

# load sdv15 pipeline
device = "cuda"
model_id = "Lykon/dreamshaper-xl-1-0"
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to(device)

# make image
prompt = "Two cats playing chess on a tree branch"
generator = torch.Generator(device=device)
generator.manual_seed(123456789)
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] 
image.save("cats_playing_chess_xl.png")

# download DPO offsets
dpo_offset_path = huggingface_hub.hf_hub_download("benjamin-paine/sd-dpo-offsets", "sd_xl_unet_dpo_offset.safetensors")
# inject
inject_dpo(pipe.unet, dpo_offset_path, device)

# make image again
generator.manual_seed(123456789)
image = pipe(prompt, guidance_scale=7.5, generator=generator).images[0] 
image.save("cats_playing_chess_xl_dpo.png")

cats_playing_chess_xl.png image/png

cats_playing_chess_xl_dpo.png image/png

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .