metadata
language: sw
license: mit
roberta-base-wechsel-swahili
Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
See the code here: https://github.com/CPJKU/wechsel
And the paper here: https://arxiv.org/abs/2112.06598
Performance
RoBERTa
Model | NLI Score | NER Score | Avg Score |
---|---|---|---|
roberta-base-wechsel-french |
82.43 | 90.88 | 86.65 |
camembert-base |
80.88 | 90.26 | 85.57 |
Model | NLI Score | NER Score | Avg Score |
---|---|---|---|
roberta-base-wechsel-german |
81.79 | 89.72 | 85.76 |
deepset/gbert-base |
78.64 | 89.46 | 84.05 |
Model | NLI Score | NER Score | Avg Score |
---|---|---|---|
roberta-base-wechsel-chinese |
78.32 | 80.55 | 79.44 |
bert-base-chinese |
76.55 | 82.05 | 79.30 |
Model | NLI Score | NER Score | Avg Score |
---|---|---|---|
roberta-base-wechsel-swahili |
75.05 | 87.39 | 81.22 |
xlm-roberta-base |
69.18 | 87.37 | 78.28 |
GPT2
Model | PPL |
---|---|
gpt2-wechsel-french |
19.71 |
gpt2 (retrained from scratch) |
20.47 |
Model | PPL |
---|---|
gpt2-wechsel-german |
26.8 |
gpt2 (retrained from scratch) |
27.63 |
Model | PPL |
---|---|
gpt2-wechsel-chinese |
51.97 |
gpt2 (retrained from scratch) |
52.98 |
Model | PPL |
---|---|
gpt2-wechsel-swahili |
10.14 |
gpt2 (retrained from scratch) |
10.58 |
See our paper for details.
Citation
Please cite WECHSEL as
@misc{minixhofer2021wechsel,
title={WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models},
author={Benjamin Minixhofer and Fabian Paischer and Navid Rekabsaz},
year={2021},
eprint={2112.06598},
archivePrefix={arXiv},
primaryClass={cs.CL}
}