benmajor27's picture
Upload processor
258d745 verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - mozilla-foundation/common_voice_17_0
language:
  - hu
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 HU Full -  snoopyben27
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: default
          split: test
          args: 'config: hu, split: test'
        metrics:
          - type: wer
            value: 8.860932585806099
            name: Wer

Whisper Large V3 HU Full - snoopyben27

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0911
  • Wer: 8.8609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1301 0.3299 1000 0.1351 14.5084
0.1324 0.6598 2000 0.1208 13.2777
0.1136 0.9898 3000 0.1066 11.5548
0.0471 1.3197 4000 0.1030 10.3788
0.0337 1.6496 5000 0.0955 9.8045
0.0311 1.9795 6000 0.0875 9.2438
0.0108 2.3095 7000 0.0911 8.8609

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1