See axolotl config
axolotl version: 0.3.0
# Image: winglian/axolotl:main-py3.10-cu118-2.0.1
base_model: meta-llama/Llama-2-7b-hf
base_model_config: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: bentarnoff/logic_magazine_jsonl
type: sharegpt
hub_model_id: bentarnoff/logic_magazine_jsonl
val_set_size: 0.01
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: "logic_magazine"
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model: "checkpoint"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
eval_table_size: 5
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
logic_magazine_jsonl
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3642
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3553 | 0.15 | 20 | 2.4167 |
2.2767 | 0.31 | 40 | 2.3869 |
2.2854 | 0.46 | 60 | 2.3658 |
2.2849 | 0.61 | 80 | 2.3470 |
2.353 | 0.76 | 100 | 2.3337 |
2.2412 | 0.92 | 120 | 2.3363 |
2.1992 | 1.07 | 140 | 2.3240 |
2.1069 | 1.22 | 160 | 2.3404 |
2.2444 | 1.37 | 180 | 2.3403 |
2.1424 | 1.53 | 200 | 2.3446 |
2.1739 | 1.68 | 220 | 2.3404 |
2.1423 | 1.83 | 240 | 2.3382 |
2.1721 | 1.98 | 260 | 2.3378 |
2.1621 | 2.14 | 280 | 2.3630 |
2.0394 | 2.29 | 300 | 2.3623 |
2.0631 | 2.44 | 320 | 2.3665 |
2.0234 | 2.6 | 340 | 2.3632 |
2.1042 | 2.75 | 360 | 2.3654 |
2.02 | 2.9 | 380 | 2.3642 |
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for bentarnoff/logic_magazine_model
Base model
meta-llama/Llama-2-7b-hf