bergurth's picture
Update to readme.md - better widjet text
fcf8b86
|
raw
history blame
2.23 kB
---
license: gpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
widjet:
- text: Bob Dillan beit Maríu Markan á barkann.
model-index:
- name: IceBERT-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- name: Precision
type: precision
value: 0.8873049035270985
- name: Recall
type: recall
value: 0.8627076114231091
- name: F1
type: f1
value: 0.8748333939173634
- name: Accuracy
type: accuracy
value: 0.9848076353832492
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IceBERT-finetuned-ner
This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0783
- Precision: 0.8873
- Recall: 0.8627
- F1: 0.8748
- Accuracy: 0.9848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0539 | 1.0 | 2904 | 0.0768 | 0.8732 | 0.8453 | 0.8590 | 0.9833 |
| 0.0281 | 2.0 | 5808 | 0.0737 | 0.8781 | 0.8492 | 0.8634 | 0.9838 |
| 0.0166 | 3.0 | 8712 | 0.0783 | 0.8873 | 0.8627 | 0.8748 | 0.9848 |
### Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3