metadata
license: agpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: >-
Bónus feðgarnir Jóhannes Jónsson og Jón Ásgeir Jóhannesson opnuðu fyrstu
Bónusbúðina í 400 fermetra húsnæði við Skútuvog laugardaginn 8. apríl 1989
model-index:
- name: XLMR-ENIS-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- name: Precision
type: precision
value: 0.861851332398317
- name: Recall
type: recall
value: 0.8384309266628767
- name: F1
type: f1
value: 0.849979828251974
- name: Accuracy
type: accuracy
value: 0.9830620929487668
XLMR-ENIS-finetuned-ner
This model is a fine-tuned version of vesteinn/XLMR-ENIS on the mim_gold_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0938
- Precision: 0.8619
- Recall: 0.8384
- F1: 0.8500
- Accuracy: 0.9831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0574 | 1.0 | 2904 | 0.0983 | 0.8374 | 0.8061 | 0.8215 | 0.9795 |
0.0321 | 2.0 | 5808 | 0.0991 | 0.8525 | 0.8235 | 0.8378 | 0.9811 |
0.0179 | 3.0 | 8712 | 0.0938 | 0.8619 | 0.8384 | 0.8500 | 0.9831 |
Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3