bart_large_paraphrase_generator_en_de_v2

This model was trained from scratch on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

{'eval_loss': 0.9200083613395691, 'eval_score': 49.97448884411352, 'eval_counts': [100712, 72963, 57055, 41578], 'eval_totals': [133837, 130839, 127841, 124843], 'eval_precisions': [75.24974409169363, 55.76548276889918, 44.6296571522438, 33.30423011302196], 'eval_bp': 1.0, 'eval_sys_len': 133837, 'eval_ref_len': 130883, 'eval_runtime': 138.6871, 'eval_samples_per_second': 21.617, 'eval_steps_per_second': 0.678}

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.11.0a0+bfe5ad2
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.