w_f1_v2v_tiny / README.md
bhattasp's picture
End of training
ef4c97e verified
|
raw
history blame
1.83 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: bhattasp/w_f1_v2v_tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: atcosim
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 12.706474693048317

bhattasp/w_f1_v2v_tiny

This model is a fine-tuned version of openai/whisper-tiny on the atcosim dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2855
  • Wer: 12.7065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0122 3.1949 1000 0.2859 11.9733
0.0013 6.3898 2000 0.2855 12.7065

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1