BGE base PatentMatch Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the bhlim/patentmatch_for_finetuning dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bhlim/bge-base-patentmatch")
sentences = [
'Referring to FIG.32 a a sink device 3200 is designed to display thumbnail images in the metadata of contents received from source devices connected via an integrated wire interface.As mentioned in the foregoing description if a remote controller 3250 capable of outputting a pointing signal is situated within a region of a specific thumbnail image 3260 side information e.g.Amanda 1st album singer.Song etc.is displayed together.',
'The method of any one of claims 8 to 12 wherein the requesting for the broadcast channel information comprises transmitting to the server image data obtained by capturing the content being reproduced by the display apparatus or audio data obtained by recording the content for a certain time.',
'The electrode assembly of any one of the preceding claims wherein the first electrode comprises a substrate 113 wherein the first active material layer comprises active material layers 112 on both surfaces of the substrate and the ceramic layer comprises ceramic material layers 50 on both surfaces of the substrate.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0426 |
cosine_accuracy@3 |
0.1014 |
cosine_accuracy@5 |
0.1448 |
cosine_accuracy@10 |
0.232 |
cosine_precision@1 |
0.0426 |
cosine_precision@3 |
0.0338 |
cosine_precision@5 |
0.029 |
cosine_precision@10 |
0.0232 |
cosine_recall@1 |
0.0426 |
cosine_recall@3 |
0.1014 |
cosine_recall@5 |
0.1448 |
cosine_recall@10 |
0.232 |
cosine_ndcg@10 |
0.1217 |
cosine_mrr@10 |
0.0884 |
cosine_map@100 |
0.1014 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0422 |
cosine_accuracy@3 |
0.0935 |
cosine_accuracy@5 |
0.1429 |
cosine_accuracy@10 |
0.2245 |
cosine_precision@1 |
0.0422 |
cosine_precision@3 |
0.0312 |
cosine_precision@5 |
0.0286 |
cosine_precision@10 |
0.0225 |
cosine_recall@1 |
0.0422 |
cosine_recall@3 |
0.0935 |
cosine_recall@5 |
0.1429 |
cosine_recall@10 |
0.2245 |
cosine_ndcg@10 |
0.1182 |
cosine_mrr@10 |
0.0861 |
cosine_map@100 |
0.0996 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0403 |
cosine_accuracy@3 |
0.0916 |
cosine_accuracy@5 |
0.1397 |
cosine_accuracy@10 |
0.2198 |
cosine_precision@1 |
0.0403 |
cosine_precision@3 |
0.0305 |
cosine_precision@5 |
0.0279 |
cosine_precision@10 |
0.022 |
cosine_recall@1 |
0.0403 |
cosine_recall@3 |
0.0916 |
cosine_recall@5 |
0.1397 |
cosine_recall@10 |
0.2198 |
cosine_ndcg@10 |
0.1151 |
cosine_mrr@10 |
0.0835 |
cosine_map@100 |
0.0963 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0379 |
cosine_accuracy@3 |
0.086 |
cosine_accuracy@5 |
0.1318 |
cosine_accuracy@10 |
0.208 |
cosine_precision@1 |
0.0379 |
cosine_precision@3 |
0.0287 |
cosine_precision@5 |
0.0264 |
cosine_precision@10 |
0.0208 |
cosine_recall@1 |
0.0379 |
cosine_recall@3 |
0.086 |
cosine_recall@5 |
0.1318 |
cosine_recall@10 |
0.208 |
cosine_ndcg@10 |
0.1089 |
cosine_mrr@10 |
0.0791 |
cosine_map@100 |
0.0909 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0328 |
cosine_accuracy@3 |
0.0742 |
cosine_accuracy@5 |
0.1144 |
cosine_accuracy@10 |
0.1847 |
cosine_precision@1 |
0.0328 |
cosine_precision@3 |
0.0247 |
cosine_precision@5 |
0.0229 |
cosine_precision@10 |
0.0185 |
cosine_recall@1 |
0.0328 |
cosine_recall@3 |
0.0742 |
cosine_recall@5 |
0.1144 |
cosine_recall@10 |
0.1847 |
cosine_ndcg@10 |
0.096 |
cosine_mrr@10 |
0.0692 |
cosine_map@100 |
0.0802 |
Training Details
Training Dataset
bhlim/patentmatch_for_finetuning
- Dataset: bhlim/patentmatch_for_finetuning at 8d60f21
- Size: 10,136 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 136.61 tokens
- max: 512 tokens
|
- min: 12 tokens
- mean: 76.35 tokens
- max: 512 tokens
|
- Samples:
positive |
anchor |
Furthermore according to this liquid consuming apparatus if the decompression level acting on the liquid sensing chamber 21 of the liquid container 1 i.e.the pressure loss arising in the connecting passage between the liquid storage portion 7 and the liquid sensing chamber 21 due to the flow rate outflowing from the liquid storage portion 7 because of distension of the diaphragm pump through application of the external force when external force is applied in the direction of expansion of volume of the diaphragm pump 42 asdepicted in FIG.6 has been set to a low level if sufficient liquid is present in the liquid container 1 the liquid sensing chamber 21 will experience substantially no change in volume. |
The liquid cartridge according to any of claims 4 to 5 further comprising a ground terminal 175c 176c 177c positioned in the second line. |
It is highly desirable for tires to have good wet skid resistance low rolling resistance and good wear characteristics.It has traditionally been very difficult to improve a tires wear characteristics without sacrificing its wet skid resistance and traction characteristics.These properties depend to a great extent on the dynamic viscoelastic properties of the rubbers utilized in making the tire. |
The pneumatic tire of at least one of the previous claims wherein the rubber composition comprises from 5 to 20 phr of the oil and from 45 to 70 phr of the terpene phenol resin. |
Before setting the environment of the mobile communication terminal a user stores a multimedia message composed of different kinds of contents i.e.images sounds and texts.For example reference block 201 indicates a multimedia message composed of several images sounds and texts.The user can select an image A a sound A and a text A for environment setting elements of the mobile communication terminal from the contents of the multimedia message and construct a theme like in block 203 using the selected image A sound A and text A.The MPU 101 maps the contents of the theme to environment setting elements of the mobile communication terminal i.e.a background screen a ringtone and a user name like in block 205.The MPU 101 then sets the environment of the mobile communication terminal using the mapped elements like in block 207 thereby automatically and collectively changing the environment of the mobile communication terminal.Mapping information about mapping between the selected contents of the multimediamessage and the environment setting elements of the mobile communication terminal is stored in the flash RAM 107. |
A terminal for processing data comprising an output unit configured to output a chatting service window a receiving unit configured to receive a request for executing a chatting service and a first download request for downloading first data through the chatting service from a user and a controller configured to control to output the first data downloaded in response to the received first download request to a background screen of the chatting service window. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.5047 |
10 |
10.0459 |
- |
- |
- |
- |
- |
0.9590 |
19 |
- |
0.0849 |
0.0915 |
0.0939 |
0.0778 |
0.0966 |
1.0095 |
20 |
7.1373 |
- |
- |
- |
- |
- |
1.5142 |
30 |
5.9969 |
- |
- |
- |
- |
- |
1.9685 |
39 |
- |
0.0890 |
0.0965 |
0.1007 |
0.0795 |
0.1012 |
2.0189 |
40 |
5.2984 |
- |
- |
- |
- |
- |
2.5237 |
50 |
4.884 |
- |
- |
- |
- |
- |
2.9779 |
59 |
- |
0.091 |
0.0967 |
0.099 |
0.0801 |
0.1013 |
3.0284 |
60 |
4.6633 |
- |
- |
- |
- |
- |
3.5331 |
70 |
4.5226 |
- |
- |
- |
- |
- |
3.8360 |
76 |
- |
0.0909 |
0.0963 |
0.0996 |
0.0802 |
0.1014 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}