SetFit with google-bert/bert-large-uncased
This is a SetFit model trained on the bhujith10/multi_class_classification_dataset dataset that can be used for Text Classification. This SetFit model uses google-bert/bert-large-uncased as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("bhujith10/bert-large-uncased-setfit_finetuned")
preds = model("Title: On the isoperimetric quotient over scalar-flat conformal classes,
Abstract: Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n$ with
smooth boundary $\partial M$. Suppose that $(M,g)$ admits a scalar-flat
conformal metric. We prove that the supremum of the isoperimetric quotient over
the scalar-flat conformal class is strictly larger than the best constant of
the isoperimetric inequality in the Euclidean space, and consequently is
achieved, if either (i) $n\ge 12$ and $\partial M$ has a nonumbilic point; or
(ii) $n\ge 10$, $\partial M$ is umbilic and the Weyl tensor does not vanish at
some boundary point.")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
23 |
145.8467 |
280 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0003 |
1 |
0.22 |
- |
0.0138 |
50 |
0.3706 |
- |
0.0276 |
100 |
0.2389 |
- |
0.0414 |
150 |
0.1628 |
- |
0.0551 |
200 |
0.1401 |
- |
0.0689 |
250 |
0.1043 |
- |
0.0827 |
300 |
0.1047 |
- |
0.0965 |
350 |
0.098 |
- |
0.1103 |
400 |
0.0931 |
- |
0.1241 |
450 |
0.1002 |
- |
0.1379 |
500 |
0.0837 |
- |
0.1516 |
550 |
0.0673 |
- |
0.1654 |
600 |
0.0709 |
- |
0.1792 |
650 |
0.08 |
- |
0.1930 |
700 |
0.0719 |
- |
0.2068 |
750 |
0.0805 |
- |
0.2206 |
800 |
0.059 |
- |
0.2344 |
850 |
0.0957 |
- |
0.2481 |
900 |
0.0614 |
- |
0.2619 |
950 |
0.0887 |
- |
0.2757 |
1000 |
0.0713 |
- |
0.2895 |
1050 |
0.0734 |
- |
0.3033 |
1100 |
0.0519 |
- |
0.3171 |
1150 |
0.0802 |
- |
0.3309 |
1200 |
0.0817 |
- |
0.3446 |
1250 |
0.0665 |
- |
0.3584 |
1300 |
0.0515 |
- |
0.3722 |
1350 |
0.0764 |
- |
0.3860 |
1400 |
0.0564 |
- |
0.3998 |
1450 |
0.0512 |
- |
0.4136 |
1500 |
0.052 |
- |
0.4274 |
1550 |
0.0398 |
- |
0.4411 |
1600 |
0.0473 |
- |
0.4549 |
1650 |
0.0433 |
- |
0.4687 |
1700 |
0.0621 |
- |
0.4825 |
1750 |
0.0506 |
- |
0.4963 |
1800 |
0.0395 |
- |
0.5101 |
1850 |
0.0516 |
- |
0.5238 |
1900 |
0.0431 |
- |
0.5376 |
1950 |
0.037 |
- |
0.5514 |
2000 |
0.0299 |
- |
0.5652 |
2050 |
0.0398 |
- |
0.5790 |
2100 |
0.0335 |
- |
0.5928 |
2150 |
0.0438 |
- |
0.6066 |
2200 |
0.0436 |
- |
0.6203 |
2250 |
0.0345 |
- |
0.6341 |
2300 |
0.0396 |
- |
0.6479 |
2350 |
0.0381 |
- |
0.6617 |
2400 |
0.0377 |
- |
0.6755 |
2450 |
0.0287 |
- |
0.6893 |
2500 |
0.0393 |
- |
0.7031 |
2550 |
0.0309 |
- |
0.7168 |
2600 |
0.0363 |
- |
0.7306 |
2650 |
0.0347 |
- |
0.7444 |
2700 |
0.0299 |
- |
0.7582 |
2750 |
0.0305 |
- |
0.7720 |
2800 |
0.0349 |
- |
0.7858 |
2850 |
0.0385 |
- |
0.7996 |
2900 |
0.0412 |
- |
0.8133 |
2950 |
0.0336 |
- |
0.8271 |
3000 |
0.0422 |
- |
0.8409 |
3050 |
0.0249 |
- |
0.8547 |
3100 |
0.0285 |
- |
0.8685 |
3150 |
0.0258 |
- |
0.8823 |
3200 |
0.0309 |
- |
0.8961 |
3250 |
0.0246 |
- |
0.9098 |
3300 |
0.0271 |
- |
0.9236 |
3350 |
0.0285 |
- |
0.9374 |
3400 |
0.0318 |
- |
0.9512 |
3450 |
0.0287 |
- |
0.9650 |
3500 |
0.0298 |
- |
0.9788 |
3550 |
0.021 |
- |
0.9926 |
3600 |
0.036 |
- |
1.0 |
3627 |
- |
0.1036 |
1.0063 |
3650 |
0.0257 |
- |
1.0201 |
3700 |
0.02 |
- |
1.0339 |
3750 |
0.0333 |
- |
1.0477 |
3800 |
0.0339 |
- |
1.0615 |
3850 |
0.0283 |
- |
1.0753 |
3900 |
0.0233 |
- |
1.0891 |
3950 |
0.0311 |
- |
1.1028 |
4000 |
0.0296 |
- |
1.1166 |
4050 |
0.0271 |
- |
1.1304 |
4100 |
0.0321 |
- |
1.1442 |
4150 |
0.0221 |
- |
1.1580 |
4200 |
0.026 |
- |
1.1718 |
4250 |
0.0283 |
- |
1.1856 |
4300 |
0.0378 |
- |
1.1993 |
4350 |
0.0225 |
- |
1.2131 |
4400 |
0.0237 |
- |
1.2269 |
4450 |
0.0254 |
- |
1.2407 |
4500 |
0.0253 |
- |
1.2545 |
4550 |
0.023 |
- |
1.2683 |
4600 |
0.0265 |
- |
1.2821 |
4650 |
0.0255 |
- |
1.2958 |
4700 |
0.0278 |
- |
1.3096 |
4750 |
0.0285 |
- |
1.3234 |
4800 |
0.0234 |
- |
1.3372 |
4850 |
0.0282 |
- |
1.3510 |
4900 |
0.0197 |
- |
1.3648 |
4950 |
0.0284 |
- |
1.3785 |
5000 |
0.0326 |
- |
1.3923 |
5050 |
0.0233 |
- |
1.4061 |
5100 |
0.0386 |
- |
1.4199 |
5150 |
0.0308 |
- |
1.4337 |
5200 |
0.0218 |
- |
1.4475 |
5250 |
0.0288 |
- |
1.4613 |
5300 |
0.0251 |
- |
1.4750 |
5350 |
0.0255 |
- |
1.4888 |
5400 |
0.0261 |
- |
1.5026 |
5450 |
0.0253 |
- |
1.5164 |
5500 |
0.0313 |
- |
1.5302 |
5550 |
0.0277 |
- |
1.5440 |
5600 |
0.0252 |
- |
1.5578 |
5650 |
0.0293 |
- |
1.5715 |
5700 |
0.0334 |
- |
1.5853 |
5750 |
0.0285 |
- |
1.5991 |
5800 |
0.0269 |
- |
1.6129 |
5850 |
0.0267 |
- |
1.6267 |
5900 |
0.0313 |
- |
1.6405 |
5950 |
0.0243 |
- |
1.6543 |
6000 |
0.0301 |
- |
1.6680 |
6050 |
0.0266 |
- |
1.6818 |
6100 |
0.0276 |
- |
1.6956 |
6150 |
0.0293 |
- |
1.7094 |
6200 |
0.0291 |
- |
1.7232 |
6250 |
0.031 |
- |
1.7370 |
6300 |
0.0283 |
- |
1.7508 |
6350 |
0.0238 |
- |
1.7645 |
6400 |
0.0261 |
- |
1.7783 |
6450 |
0.0196 |
- |
1.7921 |
6500 |
0.034 |
- |
1.8059 |
6550 |
0.0255 |
- |
1.8197 |
6600 |
0.0231 |
- |
1.8335 |
6650 |
0.0256 |
- |
1.8473 |
6700 |
0.0207 |
- |
1.8610 |
6750 |
0.0325 |
- |
1.8748 |
6800 |
0.0238 |
- |
1.8886 |
6850 |
0.0277 |
- |
1.9024 |
6900 |
0.0239 |
- |
1.9162 |
6950 |
0.0239 |
- |
1.9300 |
7000 |
0.0227 |
- |
1.9438 |
7050 |
0.0236 |
- |
1.9575 |
7100 |
0.0216 |
- |
1.9713 |
7150 |
0.0248 |
- |
1.9851 |
7200 |
0.0244 |
- |
1.9989 |
7250 |
0.0203 |
- |
2.0 |
7254 |
- |
0.1068 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.1.0+cu118
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}