import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
base_model = 'bigdefence/Llama-3.1-8B-Ko-bigdefence'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map="auto")
model.eval()
def generate_response(prompt, model, tokenizer, text_streamer,max_new_tokens=256):
    inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
    inputs = inputs.to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            streamer=text_streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response.replace(prompt, '').strip()
key = "μ•ˆλ…•?"
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{key}

### Response:
"""
text_streamer = TextStreamer(tokenizer)
response = generate_response(prompt, model, tokenizer,text_streamer)
print(response)

Uploaded model

  • Developed by: Bigdefence
  • License: apache-2.0
  • Finetuned from model : meta-llama/Meta-Llama-3.1-8B
  • Dataset : MarkrAI/KoCommercial-Dataset

Thanks

  • ν•œκ΅­μ–΄ LLM μ˜€ν”ˆμƒνƒœκ³„μ— λ§Žμ€ κ³΅ν—Œμ„ ν•΄μ£Όμ‹ , Beomi λ‹˜κ³Ό maywell λ‹˜, MarkrAIλ‹˜ κ°μ‚¬μ˜ 인사 λ“œλ¦½λ‹ˆλ‹€.

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
48
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bigdefence/Llama-3.1-8B-Ko-bigdefence

Finetuned
(892)
this model
Quantizations
2 models

Spaces using bigdefence/Llama-3.1-8B-Ko-bigdefence 5