|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: distilbert_new2_0060 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_new2_0060 |
|
|
|
This model is a fine-tuned version of [/content/drive/MyDrive/Colab Notebooks/oscar/trybackup_distilbert/new_backup_0105105](https://huggingface.co//content/drive/MyDrive/Colab Notebooks/oscar/trybackup_distilbert/new_backup_0105105) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.9522 |
|
- Validation Loss: 0.9345 |
|
- Epoch: 59 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 1.0180 | 0.9873 | 0 | |
|
| 1.0163 | 0.9878 | 1 | |
|
| 1.0145 | 0.9856 | 2 | |
|
| 1.0139 | 0.9830 | 3 | |
|
| 1.0122 | 0.9831 | 4 | |
|
| 1.0118 | 0.9830 | 5 | |
|
| 1.0094 | 0.9800 | 6 | |
|
| 1.0075 | 0.9809 | 7 | |
|
| 1.0066 | 0.9784 | 8 | |
|
| 1.0062 | 0.9768 | 9 | |
|
| 1.0032 | 0.9751 | 10 | |
|
| 1.0023 | 0.9764 | 11 | |
|
| 1.0008 | 0.9735 | 12 | |
|
| 0.9994 | 0.9730 | 13 | |
|
| 0.9986 | 0.9761 | 14 | |
|
| 0.9975 | 0.9714 | 15 | |
|
| 0.9953 | 0.9708 | 16 | |
|
| 0.9941 | 0.9683 | 17 | |
|
| 0.9933 | 0.9681 | 18 | |
|
| 0.9920 | 0.9688 | 19 | |
|
| 0.9907 | 0.9648 | 20 | |
|
| 0.9897 | 0.9625 | 21 | |
|
| 0.9890 | 0.9642 | 22 | |
|
| 0.9873 | 0.9633 | 23 | |
|
| 0.9867 | 0.9618 | 24 | |
|
| 0.9857 | 0.9600 | 25 | |
|
| 0.9839 | 0.9598 | 26 | |
|
| 0.9827 | 0.9585 | 27 | |
|
| 0.9821 | 0.9607 | 28 | |
|
| 0.9809 | 0.9579 | 29 | |
|
| 0.9803 | 0.9561 | 30 | |
|
| 0.9786 | 0.9563 | 31 | |
|
| 0.9774 | 0.9536 | 32 | |
|
| 0.9766 | 0.9542 | 33 | |
|
| 0.9756 | 0.9523 | 34 | |
|
| 0.9743 | 0.9525 | 35 | |
|
| 0.9730 | 0.9513 | 36 | |
|
| 0.9721 | 0.9507 | 37 | |
|
| 0.9715 | 0.9506 | 38 | |
|
| 0.9702 | 0.9482 | 39 | |
|
| 0.9694 | 0.9493 | 40 | |
|
| 0.9689 | 0.9462 | 41 | |
|
| 0.9673 | 0.9463 | 42 | |
|
| 0.9669 | 0.9444 | 43 | |
|
| 0.9659 | 0.9450 | 44 | |
|
| 0.9643 | 0.9429 | 45 | |
|
| 0.9625 | 0.9432 | 46 | |
|
| 0.9625 | 0.9428 | 47 | |
|
| 0.9609 | 0.9408 | 48 | |
|
| 0.9598 | 0.9399 | 49 | |
|
| 0.9596 | 0.9407 | 50 | |
|
| 0.9590 | 0.9393 | 51 | |
|
| 0.9580 | 0.9380 | 52 | |
|
| 0.9562 | 0.9383 | 53 | |
|
| 0.9558 | 0.9369 | 54 | |
|
| 0.9543 | 0.9379 | 55 | |
|
| 0.9545 | 0.9362 | 56 | |
|
| 0.9534 | 0.9349 | 57 | |
|
| 0.9523 | 0.9338 | 58 | |
|
| 0.9522 | 0.9345 | 59 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- TensorFlow 2.8.2 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|