Edit model card

whisper_charsplit_new_round2__0058

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0013
  • Train Accuracy: 0.0795
  • Train Wermet: 7.9766
  • Validation Loss: 0.5741
  • Validation Accuracy: 0.0768
  • Validation Wermet: 6.8820
  • Epoch: 57

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
0.0010 0.0795 8.7507 0.5575 0.0767 7.6778 0
0.0013 0.0795 8.9468 0.5652 0.0766 8.3360 1
0.0025 0.0795 8.7338 0.5673 0.0765 8.3770 2
0.0019 0.0795 8.9450 0.5623 0.0766 7.7117 3
0.0011 0.0795 8.9053 0.5609 0.0767 7.5155 4
0.0012 0.0795 8.8862 0.5667 0.0767 8.2913 5
0.0009 0.0795 8.7510 0.5642 0.0766 7.9083 6
0.0037 0.0795 9.3428 0.5717 0.0764 8.2631 7
0.0031 0.0795 9.2135 0.5636 0.0766 8.2384 8
0.0011 0.0795 8.9730 0.5605 0.0767 8.3958 9
0.0005 0.0795 9.3749 0.5552 0.0768 8.0800 10
0.0003 0.0795 9.3340 0.5584 0.0768 8.1322 11
0.0005 0.0795 9.2292 0.5687 0.0767 8.5576 12
0.0037 0.0795 9.2838 0.5751 0.0765 7.4189 13
0.0038 0.0795 8.7270 0.5605 0.0767 7.7098 14
0.0012 0.0795 8.8259 0.5563 0.0768 8.2647 15
0.0005 0.0795 9.0553 0.5620 0.0768 8.5020 16
0.0004 0.0795 9.1734 0.5607 0.0768 8.0252 17
0.0003 0.0795 9.0084 0.5571 0.0769 8.1563 18
0.0014 0.0795 8.7153 0.5804 0.0765 7.8654 19
0.0058 0.0794 8.8460 0.5706 0.0766 7.4342 20
0.0020 0.0795 8.6599 0.5612 0.0767 7.7369 21
0.0007 0.0795 8.6456 0.5543 0.0768 7.4625 22
0.0008 0.0795 8.3246 0.5620 0.0768 7.4475 23
0.0012 0.0795 7.9451 0.5615 0.0768 7.0907 24
0.0025 0.0795 8.1065 0.5619 0.0768 7.7020 25
0.0011 0.0795 8.4237 0.5710 0.0768 7.4035 26
0.0009 0.0795 8.3074 0.5641 0.0768 7.1747 27
0.0007 0.0795 8.5183 0.5688 0.0768 7.4310 28
0.0014 0.0795 8.6604 0.5750 0.0767 8.0751 29
0.0022 0.0795 8.2353 0.5789 0.0767 7.4442 30
0.0019 0.0795 8.6037 0.5715 0.0767 7.6157 31
0.0009 0.0795 8.4768 0.5611 0.0769 7.6392 32
0.0005 0.0795 8.2728 0.5669 0.0768 7.1451 33
0.0010 0.0795 8.1006 0.5918 0.0766 7.4447 34
0.0036 0.0795 8.9171 0.5687 0.0767 7.6962 35
0.0018 0.0795 8.4062 0.5713 0.0768 7.2127 36
0.0012 0.0795 8.3370 0.5683 0.0768 7.1040 37
0.0005 0.0795 7.9931 0.5658 0.0769 6.8043 38
0.0002 0.0795 7.9500 0.5660 0.0769 7.0891 39
0.0001 0.0795 8.1912 0.5632 0.0770 7.1929 40
0.0001 0.0795 8.2484 0.5678 0.0769 7.6993 41
0.0001 0.0795 8.2925 0.5648 0.0770 7.1917 42
0.0001 0.0795 7.9155 0.5752 0.0769 6.4900 43
0.0095 0.0793 8.3244 0.5662 0.0767 6.9524 44
0.0019 0.0795 7.8491 0.5533 0.0769 6.9541 45
0.0006 0.0795 8.0596 0.5573 0.0768 6.9489 46
0.0008 0.0795 8.0277 0.5581 0.0769 6.9081 47
0.0005 0.0795 7.6084 0.5604 0.0769 6.7158 48
0.0006 0.0795 8.0561 0.5729 0.0767 7.4189 49
0.0014 0.0795 8.2875 0.5658 0.0768 7.5768 50
0.0011 0.0795 8.4376 0.5665 0.0768 7.2469 51
0.0018 0.0795 8.3093 0.5771 0.0768 7.2637 52
0.0021 0.0795 7.8370 0.5680 0.0768 7.0030 53
0.0014 0.0795 7.7408 0.5661 0.0769 7.1664 54
0.0009 0.0795 7.7601 0.5639 0.0769 6.9567 55
0.0006 0.0795 7.8589 0.5667 0.0769 7.3058 56
0.0013 0.0795 7.9766 0.5741 0.0768 6.8820 57

Framework versions

  • Transformers 4.32.0.dev0
  • TensorFlow 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bigmorning/whisper_charsplit_new_round2__0058

Finetuned
(1215)
this model