whisper_final_havest

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0287
  • Train Accuracy: 0.0346
  • Validation Loss: 0.6219
  • Validation Accuracy: 0.0314
  • Epoch: 29

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
5.0949 0.0116 4.4444 0.0124 0
4.3242 0.0130 4.0648 0.0140 1
3.9308 0.0145 3.6837 0.0157 2
3.5552 0.0159 3.3410 0.0171 3
3.1591 0.0175 2.8089 0.0198 4
2.2408 0.0221 1.7104 0.0255 5
1.4220 0.0261 1.2181 0.0279 6
1.0460 0.0280 0.9912 0.0290 7
0.8363 0.0291 0.8645 0.0296 8
0.6967 0.0299 0.7748 0.0301 9
0.5942 0.0305 0.7201 0.0304 10
0.5151 0.0309 0.6675 0.0307 11
0.4496 0.0314 0.6382 0.0308 12
0.3951 0.0318 0.6060 0.0310 13
0.3473 0.0321 0.5945 0.0311 14
0.3053 0.0324 0.5752 0.0312 15
0.2684 0.0327 0.5700 0.0313 16
0.2355 0.0330 0.5651 0.0313 17
0.2065 0.0332 0.5619 0.0313 18
0.1785 0.0334 0.5522 0.0314 19
0.1535 0.0337 0.5609 0.0313 20
0.1310 0.0339 0.5590 0.0314 21
0.1115 0.0340 0.5695 0.0313 22
0.0951 0.0342 0.5723 0.0314 23
0.0787 0.0343 0.5796 0.0314 24
0.0649 0.0344 0.5967 0.0313 25
0.0539 0.0345 0.6019 0.0313 26
0.0441 0.0346 0.6113 0.0313 27
0.0364 0.0346 0.6110 0.0314 28
0.0287 0.0346 0.6219 0.0314 29

Framework versions

  • Transformers 4.25.0.dev0
  • TensorFlow 2.9.2
  • Datasets 2.6.1
  • Tokenizers 0.13.2
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.