Edit model card

whisper_input_decoder_shift_r_labels_no_force__0005

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 4.2479
  • Train Accuracy: 0.0119
  • Train Wermet: 0.8226
  • Validation Loss: 3.6101
  • Validation Accuracy: 0.0109
  • Validation Wermet: 0.8696
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.6348 0.0091 1.5865 4.2935 0.0093 0.9579 0
4.9212 0.0099 0.9054 4.1262 0.0097 0.9390 1
4.6819 0.0107 0.8319 3.9071 0.0103 0.8966 2
4.4443 0.0114 0.8310 3.7367 0.0106 0.8939 3
4.2479 0.0119 0.8226 3.6101 0.0109 0.8696 4

Framework versions

  • Transformers 4.34.0.dev0
  • TensorFlow 2.13.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bigmorning/whisper_input_decoder_shift_r_labels_no_force__0005

Finetuned
(1206)
this model