whisper_wermet_0010 / README.md
bigmorning's picture
Upload TFWhisperForConditionalGeneration
fc03daa
|
raw
history blame
2.66 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: whisper_wermet_0010
    results: []

whisper_wermet_0010

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.5820
  • Train Accuracy: 0.0305
  • Train Wermet: 1.5323
  • Validation Loss: 0.6980
  • Validation Accuracy: 0.0305
  • Validation Wermet: 1.1238
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.0795 0.0116 43.8776 4.4395 0.0122 35.4119 0
4.3059 0.0131 29.7976 4.0311 0.0143 26.0070 1
3.8871 0.0148 19.3999 3.6500 0.0158 19.2186 2
3.0943 0.0184 18.3704 2.3327 0.0226 22.5034 3
1.8954 0.0240 16.2471 1.4889 0.0266 14.2782 4
1.2781 0.0269 8.4169 1.1273 0.0283 7.4581 5
0.9797 0.0283 4.8739 0.9481 0.0292 3.9451 6
0.8006 0.0293 2.7433 0.8371 0.0297 2.3065 7
0.6764 0.0299 2.1646 0.7554 0.0301 1.3005 8
0.5820 0.0305 1.5323 0.6980 0.0305 1.1238 9

Framework versions

  • Transformers 4.25.0.dev0
  • TensorFlow 2.9.2
  • Datasets 2.6.1
  • Tokenizers 0.13.2