bigmorning's picture
Upload TFWhisperForConditionalGeneration
fcb42de
|
raw
history blame
3.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: whisper_wermet_nosup_0015
    results: []

whisper_wermet_nosup_0015

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2198
  • Train Accuracy: 0.0320
  • Train Wermet: 3.8215
  • Validation Loss: 0.4835
  • Validation Accuracy: 0.0311
  • Validation Wermet: 4.4217
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.0729 0.0113 42.1824 4.4421 0.0120 27.3059 0
4.3249 0.0126 23.9224 4.0443 0.0141 18.2054 1
3.8845 0.0144 12.7780 3.4577 0.0169 10.3356 2
2.7411 0.0198 15.0018 1.8774 0.0244 14.5666 3
1.5621 0.0250 9.7248 1.2443 0.0273 5.4731 4
1.0745 0.0272 7.1512 0.9802 0.0285 4.4745 5
0.8261 0.0284 6.2358 0.8209 0.0293 5.6600 6
0.6673 0.0292 5.8338 0.7182 0.0298 4.0874 7
0.5548 0.0298 5.0555 0.6489 0.0301 4.4537 8
0.4694 0.0303 4.3895 0.6038 0.0304 2.8294 9
0.4011 0.0307 4.4178 0.5673 0.0306 3.5806 10
0.3446 0.0311 4.1189 0.5329 0.0308 4.7372 11
0.2968 0.0314 3.9189 0.5138 0.0309 2.2499 12
0.2553 0.0317 3.7758 0.4990 0.0310 3.3427 13
0.2198 0.0320 3.8215 0.4835 0.0311 4.4217 14

Framework versions

  • Transformers 4.27.0.dev0
  • TensorFlow 2.11.0
  • Datasets 2.10.0
  • Tokenizers 0.13.2