Update README.md
#2
by
TimeRobber
- opened
README.md
CHANGED
@@ -69,7 +69,7 @@ language:
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
-
- no
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
@@ -108,28 +108,41 @@ language:
|
|
108 |
tags:
|
109 |
- text2text-generation
|
110 |
widget:
|
111 |
-
- text:
|
112 |
-
example_title:
|
113 |
-
- text:
|
114 |
-
example_title:
|
115 |
-
- text:
|
116 |
-
|
117 |
-
|
118 |
-
example_title:
|
119 |
-
- text:
|
120 |
-
|
121 |
-
|
122 |
-
example_title:
|
123 |
-
- text:
|
124 |
-
example_title:
|
125 |
-
- text:
|
126 |
-
example_title:
|
127 |
-
- text:
|
128 |
-
|
129 |
-
|
130 |
-
example_title:
|
131 |
-
- text:
|
132 |
-
example_title:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
model-index:
|
134 |
- name: mt0-xxl-mt
|
135 |
results:
|
@@ -231,7 +244,7 @@ model-index:
|
|
231 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
232 |
metrics:
|
233 |
- type: Accuracy
|
234 |
-
value: 42
|
235 |
- task:
|
236 |
type: Natural language inference
|
237 |
dataset:
|
@@ -435,7 +448,7 @@ model-index:
|
|
435 |
dataset:
|
436 |
type: story_cloze
|
437 |
name: StoryCloze (2016)
|
438 |
-
config:
|
439 |
split: validation
|
440 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
441 |
metrics:
|
@@ -451,7 +464,7 @@ model-index:
|
|
451 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
452 |
metrics:
|
453 |
- type: Accuracy
|
454 |
-
value: 88
|
455 |
- task:
|
456 |
type: Sentence completion
|
457 |
dataset:
|
@@ -462,7 +475,7 @@ model-index:
|
|
462 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
463 |
metrics:
|
464 |
- type: Accuracy
|
465 |
-
value: 81
|
466 |
- task:
|
467 |
type: Sentence completion
|
468 |
dataset:
|
@@ -473,7 +486,7 @@ model-index:
|
|
473 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
474 |
metrics:
|
475 |
- type: Accuracy
|
476 |
-
value: 79
|
477 |
- task:
|
478 |
type: Sentence completion
|
479 |
dataset:
|
@@ -484,7 +497,7 @@ model-index:
|
|
484 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
485 |
metrics:
|
486 |
- type: Accuracy
|
487 |
-
value: 90
|
488 |
- task:
|
489 |
type: Sentence completion
|
490 |
dataset:
|
@@ -495,7 +508,7 @@ model-index:
|
|
495 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
496 |
metrics:
|
497 |
- type: Accuracy
|
498 |
-
value: 88
|
499 |
- task:
|
500 |
type: Sentence completion
|
501 |
dataset:
|
@@ -506,7 +519,7 @@ model-index:
|
|
506 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
507 |
metrics:
|
508 |
- type: Accuracy
|
509 |
-
value: 56
|
510 |
- task:
|
511 |
type: Sentence completion
|
512 |
dataset:
|
@@ -517,7 +530,7 @@ model-index:
|
|
517 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
518 |
metrics:
|
519 |
- type: Accuracy
|
520 |
-
value: 81
|
521 |
- task:
|
522 |
type: Sentence completion
|
523 |
dataset:
|
@@ -528,7 +541,7 @@ model-index:
|
|
528 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
529 |
metrics:
|
530 |
- type: Accuracy
|
531 |
-
value: 81
|
532 |
- task:
|
533 |
type: Sentence completion
|
534 |
dataset:
|
@@ -539,7 +552,7 @@ model-index:
|
|
539 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
540 |
metrics:
|
541 |
- type: Accuracy
|
542 |
-
value: 76
|
543 |
- task:
|
544 |
type: Sentence completion
|
545 |
dataset:
|
@@ -550,7 +563,7 @@ model-index:
|
|
550 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
551 |
metrics:
|
552 |
- type: Accuracy
|
553 |
-
value: 76
|
554 |
- task:
|
555 |
type: Sentence completion
|
556 |
dataset:
|
@@ -561,7 +574,7 @@ model-index:
|
|
561 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
562 |
metrics:
|
563 |
- type: Accuracy
|
564 |
-
value: 85
|
565 |
- task:
|
566 |
type: Sentence completion
|
567 |
dataset:
|
@@ -572,7 +585,7 @@ model-index:
|
|
572 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
573 |
metrics:
|
574 |
- type: Accuracy
|
575 |
-
value: 87
|
576 |
- task:
|
577 |
type: Sentence completion
|
578 |
dataset:
|
@@ -583,7 +596,7 @@ model-index:
|
|
583 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
584 |
metrics:
|
585 |
- type: Accuracy
|
586 |
-
value: 91
|
587 |
- task:
|
588 |
type: Sentence completion
|
589 |
dataset:
|
@@ -683,6 +696,7 @@ model-index:
|
|
683 |
metrics:
|
684 |
- type: Accuracy
|
685 |
value: 93.05
|
|
|
686 |
---
|
687 |
|
688 |
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
|
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
+
- 'no'
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
|
|
108 |
tags:
|
109 |
- text2text-generation
|
110 |
widget:
|
111 |
+
- text: Life is beautiful! Translate to Mongolian.
|
112 |
+
example_title: mn-en translation
|
113 |
+
- text: Le mot japonais «憂鬱» veut dire quoi en Odia?
|
114 |
+
example_title: jp-or-fr translation
|
115 |
+
- text: >-
|
116 |
+
Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte
|
117 |
+
stell die Frage auf Norwegisch.
|
118 |
+
example_title: de-nb quiz
|
119 |
+
- text: >-
|
120 |
+
一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
121 |
+
review as positive, neutral or negative?
|
122 |
+
example_title: zh-en sentiment
|
123 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
124 |
+
example_title: zh-zh sentiment
|
125 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
126 |
+
example_title: vi-en query
|
127 |
+
- text: >-
|
128 |
+
Proposez au moins cinq mots clés concernant «Réseau de neurones
|
129 |
+
artificiels».
|
130 |
+
example_title: fr-fr query
|
131 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
132 |
+
example_title: te-en qa
|
133 |
+
- text: Why is the sky blue?
|
134 |
+
example_title: en-en qa
|
135 |
+
- text: >-
|
136 |
+
Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
137 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its
|
138 |
+
moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
|
139 |
+
example_title: es-en fable
|
140 |
+
- text: >-
|
141 |
+
Write a fable about wood elves living in a forest that is suddenly invaded
|
142 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and
|
143 |
+
its moral is "Violence is the last refuge of the incompetent". Fable (in
|
144 |
+
Hindi):
|
145 |
+
example_title: hi-en fable
|
146 |
model-index:
|
147 |
- name: mt0-xxl-mt
|
148 |
results:
|
|
|
244 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
245 |
metrics:
|
246 |
- type: Accuracy
|
247 |
+
value: 42
|
248 |
- task:
|
249 |
type: Natural language inference
|
250 |
dataset:
|
|
|
448 |
dataset:
|
449 |
type: story_cloze
|
450 |
name: StoryCloze (2016)
|
451 |
+
config: '2016'
|
452 |
split: validation
|
453 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
454 |
metrics:
|
|
|
464 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
465 |
metrics:
|
466 |
- type: Accuracy
|
467 |
+
value: 88
|
468 |
- task:
|
469 |
type: Sentence completion
|
470 |
dataset:
|
|
|
475 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
476 |
metrics:
|
477 |
- type: Accuracy
|
478 |
+
value: 81
|
479 |
- task:
|
480 |
type: Sentence completion
|
481 |
dataset:
|
|
|
486 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
487 |
metrics:
|
488 |
- type: Accuracy
|
489 |
+
value: 79
|
490 |
- task:
|
491 |
type: Sentence completion
|
492 |
dataset:
|
|
|
497 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
498 |
metrics:
|
499 |
- type: Accuracy
|
500 |
+
value: 90
|
501 |
- task:
|
502 |
type: Sentence completion
|
503 |
dataset:
|
|
|
508 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
509 |
metrics:
|
510 |
- type: Accuracy
|
511 |
+
value: 88
|
512 |
- task:
|
513 |
type: Sentence completion
|
514 |
dataset:
|
|
|
519 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
520 |
metrics:
|
521 |
- type: Accuracy
|
522 |
+
value: 56
|
523 |
- task:
|
524 |
type: Sentence completion
|
525 |
dataset:
|
|
|
530 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
531 |
metrics:
|
532 |
- type: Accuracy
|
533 |
+
value: 81
|
534 |
- task:
|
535 |
type: Sentence completion
|
536 |
dataset:
|
|
|
541 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
542 |
metrics:
|
543 |
- type: Accuracy
|
544 |
+
value: 81
|
545 |
- task:
|
546 |
type: Sentence completion
|
547 |
dataset:
|
|
|
552 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
553 |
metrics:
|
554 |
- type: Accuracy
|
555 |
+
value: 76
|
556 |
- task:
|
557 |
type: Sentence completion
|
558 |
dataset:
|
|
|
563 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
564 |
metrics:
|
565 |
- type: Accuracy
|
566 |
+
value: 76
|
567 |
- task:
|
568 |
type: Sentence completion
|
569 |
dataset:
|
|
|
574 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
575 |
metrics:
|
576 |
- type: Accuracy
|
577 |
+
value: 85
|
578 |
- task:
|
579 |
type: Sentence completion
|
580 |
dataset:
|
|
|
585 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
586 |
metrics:
|
587 |
- type: Accuracy
|
588 |
+
value: 87
|
589 |
- task:
|
590 |
type: Sentence completion
|
591 |
dataset:
|
|
|
596 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
597 |
metrics:
|
598 |
- type: Accuracy
|
599 |
+
value: 91
|
600 |
- task:
|
601 |
type: Sentence completion
|
602 |
dataset:
|
|
|
696 |
metrics:
|
697 |
- type: Accuracy
|
698 |
value: 93.05
|
699 |
+
pipeline_tag: text2text-generation
|
700 |
---
|
701 |
|
702 |
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
|