my_bert_model / README.md
billfass
Initial commit of BertModel and tokenizer
715c3cc
|
raw
history blame
1.72 kB
# Custom BERT Model for Text Classification
## Model Description
This is a custom BERT model fine-tuned for text classification. The model was trained using a subset of a publicly available dataset and is capable of classifying text into 3 classes.
## Training Details
- **Architecture**: BERT Base Multilingual Cased
- **Training data**: Custom dataset
- **Preprocessing**: Tokenized using BERT's tokenizer, with a max sequence length of 80.
- **Fine-tuning**: The model was trained for 1 epoch with a learning rate of 2e-5, using AdamW optimizer and Cross-Entropy Loss.
- **Evaluation Metrics**: Accuracy on a held-out validation set.
## How to Use
### Dependencies
- Transformers 4.x
- Torch 1.x
### Code Snippet
For classification:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("billfass/my_bert_model")
model = AutoModelForSequenceClassification.from_pretrained("billfass/my_bert_model")
text = "Your example text here."
inputs = tokenizer(text, padding=True, truncation=True, max_length=80, return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(**inputs, labels=labels)
loss = outputs.loss
logits = outputs.logits
# To get probabilities:
probs = torch.softmax(logits, dim=-1)
```
## Limitations and Bias
- Trained on a specific dataset, so may not generalize well to other kinds of text.
- Uses multilingual cased BERT, so it's not optimized for any specific language.
## Authors
- **Fassinou Bile**
- **billfass2010@gmail.com**
## Acknowledgments
Special thanks to Hugging Face for providing the Transformers library that made this project possible.
---