test7LunarLander-v2 / config.json
biwako's picture
retry
2864280
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b936da5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b936da680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b936da710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b936da7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8b936da830>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b936da8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b936da950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b936da9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b936daa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b936dab00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b936dab90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b93702150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655745613.4027693, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgIOpPWbsij/g4/I9Ic9gvsMA2T3td3y9AAAAAAAAAADz1ki+PZeMP1GjFD3VUJa+EUycvo/sKz4AAAAAAAAAAM1eRj6Mblc/g8pOvZqoOL5bd8Y8mJ02vgAAAAAAAAAAmpXQvNZhnj6QgYA9l4g7vsGtZ7uGcfq9AAAAAAAAAAAIWhE/b7s0P/2b8rveoBu+46XMu//VDL4AAAAAAAAAALNpy732rGi6e74SOfWoBDZZeIs6W9n8NAAAgD8AAIA/M2M+u2Pbmj/KuoS7vnrXvuX32Dwevps9AAAAAAAAAABTgVI+1zksPlNOhb1zY+6964uKPcpGwTwAAAAAAAAAALbH1z6KzhU/mj4nvbDNHb4oNUs875fDvQAAAAAAAAAAmqFMux8N3rmOpwA6rka+toZg2Lju6hW5AACAPwAAgD+qyOc+iPAPP4eLqTnCaR6+c7wAvWpeND0AAAAAAAAAAPNC3z32KES6VUJeOTsSBTbf7Ka7wuaDuAAAgD8AAIA/mqtPPT2aL7mH8AK9wIz4vA4eY7s+xtq9AAAAAAAAgD8AZck8j9IQuvZ9HjzuxJG2ZUgquz3ui7UAAIA/AACAPxMHAb5fAo0/A1rvPJB4or4kSCu9gfS2PQAAAAAAAAAAYP9YPo9MKz6jMIm9kMzxveLpLTyoHto8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXTXPEfmDXUCUhpRSlIwBbJRN6AOMAXSUR0B3V4TAWSEEdX2UKGgGaAloD0MId0zdlV1zWcCUhpRSlGgVTU8BaBZHQHdYURvm5lR1fZQoaAZoCWgPQwhTsMbZdB1gQJSGlFKUaBVN6ANoFkdAd2QPbwjMV3V9lChoBmgJaA9DCABxV68io0VAlIaUUpRoFUvKaBZHQHdlYsiB5HF1fZQoaAZoCWgPQwi8OzJWmxRfQJSGlFKUaBVN6ANoFkdAd3FcbiqABnV9lChoBmgJaA9DCPAxWHGqhV5AlIaUUpRoFU3oA2gWR0B3dBB9kSVXdX2UKGgGaAloD0MILXsS2JwVTkCUhpRSlGgVTegDaBZHQHeBghbGFSN1fZQoaAZoCWgPQwgf8wGBzvhbQJSGlFKUaBVN6ANoFkdAd4OSWqtHQXV9lChoBmgJaA9DCKUTCaaaZTXAlIaUUpRoFUu7aBZHQHeQPM4cWCV1fZQoaAZoCWgPQwj/rs+c9UtdQJSGlFKUaBVN6ANoFkdAd5C29+PRzHV9lChoBmgJaA9DCIBgjh6/5lBAlIaUUpRoFU3oA2gWR0B35WCCjDbbdX2UKGgGaAloD0MIHVcju9KSF8CUhpRSlGgVTTMBaBZHQHfnBK+SKWN1fZQoaAZoCWgPQwjT3AphNTtdQJSGlFKUaBVN6ANoFkdAd++K8L8aXXV9lChoBmgJaA9DCOyi6IGP7UBAlIaUUpRoFU0LAWgWR0B4ByrlvIfbdX2UKGgGaAloD0MI4jycwHSCX0CUhpRSlGgVTegDaBZHQHgIstK7I1d1fZQoaAZoCWgPQwiXb31Yb7NjQJSGlFKUaBVN6ANoFkdAeDpGKAJ9iXV9lChoBmgJaA9DCHiWICOg9jHAlIaUUpRoFU0yAWgWR0B4XRbPhQ3xdX2UKGgGaAloD0MI6NhBJa7hYECUhpRSlGgVTegDaBZHQHhwp3C9AX51fZQoaAZoCWgPQwjIC+nwELpJQJSGlFKUaBVN6ANoFkdAeJ3O+qR2bHV9lChoBmgJaA9DCCfBG9KoD1lAlIaUUpRoFU3oA2gWR0B4pmIWP91mdX2UKGgGaAloD0MIC+4HPDA3X0CUhpRSlGgVTegDaBZHQHinIl2NedF1fZQoaAZoCWgPQwgXZTbIpBxgQJSGlFKUaBVN6ANoFkdAeLO9ic5Ke3V9lChoBmgJaA9DCF00ZDxKa1VAlIaUUpRoFU3oA2gWR0B4v7eUILPVdX2UKGgGaAloD0MIXI5XIPoraUCUhpRSlGgVTeIBaBZHQHjCS7f51vF1fZQoaAZoCWgPQwhihzHp77BXQJSGlFKUaBVN6ANoFkdAeMKFBppN9HV9lChoBmgJaA9DCOcb0T3r6F9AlIaUUpRoFU3oA2gWR0B40TnxJ/XodX2UKGgGaAloD0MIUP9Z8+NNYkCUhpRSlGgVTegDaBZHQHjeUMgEEDB1fZQoaAZoCWgPQwgu51Jc1b1gQJSGlFKUaBVN6ANoFkdAeN7UONHYpXV9lChoBmgJaA9DCCtrm+JxmWFAlIaUUpRoFU3oA2gWR0B46jM4cWCVdX2UKGgGaAloD0MIaOif4GJLXECUhpRSlGgVTegDaBZHQHjr0RODaoN1fZQoaAZoCWgPQwj6sx8potthQJSGlFKUaBVN6ANoFkdAeT3YpUgjhXV9lChoBmgJaA9DCLZHb7iP5EJAlIaUUpRoFU05AWgWR0B5U28274BWdX2UKGgGaAloD0MIdAexM4VkXUCUhpRSlGgVTegDaBZHQHlYb+o99tx1fZQoaAZoCWgPQwjPE8/ZAhxMQJSGlFKUaBVNFwFoFkdAeWoQ/oq0+nV9lChoBmgJaA9DCK6ek943AFxAlIaUUpRoFU3oA2gWR0B5rY9eQdS3dX2UKGgGaAloD0MI7l7uk6NGW0CUhpRSlGgVTegDaBZHQHnCej2zv7Z1fZQoaAZoCWgPQwguPC8VG+VYQJSGlFKUaBVN6ANoFkdAefS8fms/6nV9lChoBmgJaA9DCKJe8GnOrWBAlIaUUpRoFU3oA2gWR0B5/nP1L8JldX2UKGgGaAloD0MI+ptQiIAdXkCUhpRSlGgVTegDaBZHQHn/UfxMFll1fZQoaAZoCWgPQwiwA+eMqMhgQJSGlFKUaBVN6ANoFkdAeg0Fpfx+a3V9lChoBmgJaA9DCKQa9ntiZl5AlIaUUpRoFU3oA2gWR0B6GWkN4JNTdX2UKGgGaAloD0MIfXbAdcV+WkCUhpRSlGgVTegDaBZHQHob7+tKZlZ1fZQoaAZoCWgPQwhPAwZJnwtbQJSGlFKUaBVN6ANoFkdAeixz/6wdKnV9lChoBmgJaA9DCL6iW69pIWNAlIaUUpRoFU0RA2gWR0B6OHQmeDnOdX2UKGgGaAloD0MIWd5VD5iDXkCUhpRSlGgVTegDaBZHQHo6gNb1RLt1fZQoaAZoCWgPQwiifhe25sNgQJSGlFKUaBVN6ANoFkdAekYVuaWonHV9lChoBmgJaA9DCPhPN1Dg+1ZAlIaUUpRoFU3oA2gWR0B6R63AmAskdX2UKGgGaAloD0MII2jMJOqPQUCUhpRSlGgVTQABaBZHQHpKVvqC6H11fZQoaAZoCWgPQwhBSuza3rNkQJSGlFKUaBVN6ANoFkdAepaTgVGkOHV9lChoBmgJaA9DCPkUAOOZJ2FAlIaUUpRoFU3oA2gWR0B6qhQ53kgfdX2UKGgGaAloD0MIacnjaXljYECUhpRSlGgVTegDaBZHQHq+Zbpu/Dd1fZQoaAZoCWgPQwgwgzEiUWg4wJSGlFKUaBVL8mgWR0B6w7Roh6jWdX2UKGgGaAloD0MI7ISX4NRQYUCUhpRSlGgVTegDaBZHQHr36SgXdj51fZQoaAZoCWgPQwjqXif15cBjQJSGlFKUaBVN6ANoFkdAewuL6UJOWXV9lChoBmgJaA9DCAhzu5f7DV5AlIaUUpRoFU3oA2gWR0B7PDR8c+7ldX2UKGgGaAloD0MI+IvZklWIV0CUhpRSlGgVTegDaBZHQHtFhO58Sf11fZQoaAZoCWgPQwjNBS6PNd9cQJSGlFKUaBVN6ANoFkdAe0ZoRZlnRXV9lChoBmgJaA9DCIviVdY2E15AlIaUUpRoFU3oA2gWR0B7YwnVoYeldX2UKGgGaAloD0MIcjJxqyAFY0CUhpRSlGgVTegDaBZHQHtmEcsDnvF1fZQoaAZoCWgPQwgxl1Rtt5BgQJSGlFKUaBVN6ANoFkdAe3kTLW7OFHV9lChoBmgJaA9DCFhTWRR2Yl5AlIaUUpRoFU3oA2gWR0B7hr4N7SiNdX2UKGgGaAloD0MICryTTw+TYECUhpRSlGgVTegDaBZHQHuJHq7iADt1fZQoaAZoCWgPQwgn3ZbIBfJhQJSGlFKUaBVN6ANoFkdAe5WnfVI7NnV9lChoBmgJaA9DCPim6bMD9V5AlIaUUpRoFU3oA2gWR0B7msQiA2AHdX2UKGgGaAloD0MISPje36D4UkCUhpRSlGgVTegDaBZHQHuiZyhi9Zl1fZQoaAZoCWgPQwiKWS+GcixdQJSGlFKUaBVN6ANoFkdAfAEr5qM3qHV9lChoBmgJaA9DCJZ31QPmf1xAlIaUUpRoFU3oA2gWR0B8F7nFHavidX2UKGgGaAloD0MIQSrFjsYZX0CUhpRSlGgVTegDaBZHQHweABo24ut1fZQoaAZoCWgPQwhfuHNhpHFaQJSGlFKUaBVN6ANoFkdAfFoIjnmq53V9lChoBmgJaA9DCELSp1X02GBAlIaUUpRoFU3oA2gWR0B8b9Qfp2U0dX2UKGgGaAloD0MIJov7j0z9W0CUhpRSlGgVTegDaBZHQHyiezdDYyx1fZQoaAZoCWgPQwgn2H+dm6NcQJSGlFKUaBVN6ANoFkdAfKxZpBX0XnV9lChoBmgJaA9DCH09X7NcK1tAlIaUUpRoFU3oA2gWR0B8rTfHggoxdX2UKGgGaAloD0MIz0iERrB6W0CUhpRSlGgVTegDaBZHQHzJ0IcBEKF1fZQoaAZoCWgPQwgO9FDbhkxcQJSGlFKUaBVN6ANoFkdAfMzDst03fnV9lChoBmgJaA9DCPkVa7jIl05AlIaUUpRoFU3oA2gWR0B84DlxOtW/dX2UKGgGaAloD0MIomEx6lpCXkCUhpRSlGgVTegDaBZHQHztt/FzdUN1fZQoaAZoCWgPQwjcKR2s/9BTQJSGlFKUaBVN6ANoFkdAfO/8s+V1OnV9lChoBmgJaA9DCNwr81ZdzFhAlIaUUpRoFU3oA2gWR0B8/McKgIyCdX2UKGgGaAloD0MImODUB5KhX0CUhpRSlGgVTegDaBZHQH0BoqLCN0h1fZQoaAZoCWgPQwifc7frpSnXP5SGlFKUaBVNSgFoFkdAfQgJ0GNaQnV9lChoBmgJaA9DCM3lBkOdtGNAlIaUUpRoFU3oA2gWR0B9CBHOKO1fdX2UKGgGaAloD0MIuTR+4RUdbECUhpRSlGgVTXYBaBZHQH1YtxAB1cN1fZQoaAZoCWgPQwjql4i3zgNgQJSGlFKUaBVN6ANoFkdAfWPwvQF9r3V9lChoBmgJaA9DCOYg6GhVsFJAlIaUUpRoFU3oA2gWR0B9eBfCyhSMdX2UKGgGaAloD0MI+IkD6PfnUkCUhpRSlGgVTegDaBZHQH1+EyckMTh1fZQoaAZoCWgPQwhUU5J1uJhgQJSGlFKUaBVN6ANoFkdAfbeY02tMf3V9lChoBmgJaA9DCFThz/Bm8llAlIaUUpRoFU3oA2gWR0B9zVybQTmGdX2UKGgGaAloD0MIKv9aXrlmXkCUhpRSlGgVTegDaBZHQH4DIISlFc91fZQoaAZoCWgPQwjULNDukBpeQJSGlFKUaBVN6ANoFkdAfi8CCSRr8HV9lChoBmgJaA9DCN20Gach21pAlIaUUpRoFU3oA2gWR0B+MlhfBvaUdX2UKGgGaAloD0MIomEx6lroXUCUhpRSlGgVTegDaBZHQH5Hs3l0YCR1fZQoaAZoCWgPQwgLCoMyjVZWQJSGlFKUaBVN6ANoFkdAflahvR7Z4HV9lChoBmgJaA9DCDLH8q56EV5AlIaUUpRoFU3oA2gWR0B+WU8yN4qxdX2UKGgGaAloD0MIRluVRPbtaECUhpRSlGgVTfgCaBZHQH5jeAI6bON1fZQoaAZoCWgPQwiTVRFuMjdUQJSGlFKUaBVN6ANoFkdAfmeRg7YChnV9lChoBmgJaA9DCBwnhXmP815AlIaUUpRoFU3oA2gWR0B+bMjY7JXAdX2UKGgGaAloD0MI0PHR4oyzXUCUhpRSlGgVTegDaBZHQH5yh3/xUed1fZQoaAZoCWgPQwivYBvxZORbQJSGlFKUaBVN6ANoFkdAfnKR0U47zXV9lChoBmgJaA9DCOP74lKVj1ZAlIaUUpRoFU3oA2gWR0B+evY150KadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}