Edit model card

clinical-ner

This model is a fine-tuned version of microsoft/deberta-v3-base on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8058
  • Precision: 0.5786
  • Recall: 0.6683
  • F1: 0.6202
  • Accuracy: 0.8099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Python Code:

# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("token-classification", model="blaze999/clinical-ner", aggregation_strategy='simple')
result = pipe('45 year old woman diagnosed with CAD')



# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("blaze999/clinical-ner")
model = AutoModelForTokenClassification.from_pretrained("blaze999/clinical-ner")

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 5 4.7713 0.0002 0.001 0.0004 0.0182
No log 2.0 10 4.2264 0.0002 0.0008 0.0003 0.1481
No log 3.0 15 3.6238 0.0004 0.0003 0.0003 0.4575
4.2324 4.0 20 2.8751 0.0 0.0 0.0 0.4734
4.2324 5.0 25 2.4550 0.0306 0.0008 0.0015 0.4739
4.2324 6.0 30 2.1920 0.0722 0.0437 0.0545 0.5007
4.2324 7.0 35 1.9841 0.1137 0.1087 0.1112 0.5392
2.3521 8.0 40 1.8153 0.1956 0.189 0.1922 0.5829
2.3521 9.0 45 1.6504 0.2539 0.2617 0.2578 0.6218
2.3521 10.0 50 1.4801 0.3607 0.3787 0.3695 0.6782
2.3521 11.0 55 1.3417 0.3933 0.433 0.4122 0.7021
1.6185 12.0 60 1.2333 0.4054 0.4795 0.4394 0.7203
1.6185 13.0 65 1.1490 0.4307 0.5125 0.4680 0.7347
1.6185 14.0 70 1.0750 0.4412 0.543 0.4868 0.7503
1.6185 15.0 75 1.0179 0.4816 0.5637 0.5195 0.7619
1.1438 16.0 80 0.9774 0.4899 0.578 0.5303 0.7689
1.1438 17.0 85 0.9475 0.5005 0.5955 0.5439 0.7743
1.1438 18.0 90 0.9192 0.5082 0.6078 0.5535 0.7788
1.1438 19.0 95 0.8923 0.5151 0.6085 0.5579 0.7828
0.8863 20.0 100 0.8691 0.5263 0.6242 0.5711 0.7882
0.8863 21.0 105 0.8604 0.5358 0.6342 0.5809 0.7907
0.8863 22.0 110 0.8474 0.5429 0.641 0.5879 0.7946
0.8863 23.0 115 0.8362 0.5493 0.644 0.5929 0.7969
0.7361 24.0 120 0.8284 0.5531 0.6512 0.5982 0.7994
0.7361 25.0 125 0.8325 0.5555 0.6565 0.6018 0.8001
0.7361 26.0 130 0.8156 0.5686 0.6562 0.6093 0.8035
0.7361 27.0 135 0.8177 0.5634 0.6625 0.6089 0.8039
0.6449 28.0 140 0.8152 0.5643 0.6567 0.6070 0.8036
0.6449 29.0 145 0.8109 0.5700 0.6647 0.6137 0.8066
0.6449 30.0 150 0.8164 0.5697 0.6653 0.6138 0.8055
0.6449 31.0 155 0.8081 0.5742 0.6627 0.6153 0.8085
0.5912 32.0 160 0.8130 0.5687 0.6677 0.6142 0.8067
0.5912 33.0 165 0.8048 0.5779 0.6637 0.6179 0.8089
0.5912 34.0 170 0.8096 0.5760 0.669 0.6190 0.8085
0.5912 35.0 175 0.8063 0.5790 0.6677 0.6202 0.8091
0.5625 36.0 180 0.8052 0.5755 0.6673 0.6180 0.8094
0.5625 37.0 185 0.8063 0.5753 0.6667 0.6176 0.8093
0.5625 38.0 190 0.8055 0.5783 0.6677 0.6198 0.8103
0.5625 39.0 195 0.8052 0.5792 0.668 0.6205 0.8099
0.5442 40.0 200 0.8052 0.5798 0.6685 0.6210 0.8097
0.5442 41.0 205 0.8055 0.5784 0.6683 0.6201 0.8098
0.5442 42.0 210 0.8056 0.5789 0.6685 0.6205 0.8100
0.5442 43.0 215 0.8057 0.5786 0.6683 0.6202 0.8100
0.5397 44.0 220 0.8057 0.5786 0.6683 0.6202 0.8099
0.5397 45.0 225 0.8058 0.5786 0.6683 0.6202 0.8099

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1
Downloads last month
36
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for blaze999/clinical-ner

Finetuned
(229)
this model