File size: 6,216 Bytes
4d0745a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e752c31
4d0745a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e752c31
 
 
 
39f2f45
e752c31
 
 
 
 
 
 
39f2f45
 
e752c31
 
4d0745a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: clinical-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clinical-ner

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Medical dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8058
- Precision: 0.5786
- Recall: 0.6683
- F1: 0.6202
- Accuracy: 0.8099

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP

### Python Code:
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("token-classification", model="blaze999/clinical-ner", aggregation_strategy='simple')
result = pipe('45 year old woman diagnosed with CAD')



# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("blaze999/clinical-ner")
model = AutoModelForTokenClassification.from_pretrained("blaze999/clinical-ner")
```

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 5    | 4.7713          | 0.0002    | 0.001  | 0.0004 | 0.0182   |
| No log        | 2.0   | 10   | 4.2264          | 0.0002    | 0.0008 | 0.0003 | 0.1481   |
| No log        | 3.0   | 15   | 3.6238          | 0.0004    | 0.0003 | 0.0003 | 0.4575   |
| 4.2324        | 4.0   | 20   | 2.8751          | 0.0       | 0.0    | 0.0    | 0.4734   |
| 4.2324        | 5.0   | 25   | 2.4550          | 0.0306    | 0.0008 | 0.0015 | 0.4739   |
| 4.2324        | 6.0   | 30   | 2.1920          | 0.0722    | 0.0437 | 0.0545 | 0.5007   |
| 4.2324        | 7.0   | 35   | 1.9841          | 0.1137    | 0.1087 | 0.1112 | 0.5392   |
| 2.3521        | 8.0   | 40   | 1.8153          | 0.1956    | 0.189  | 0.1922 | 0.5829   |
| 2.3521        | 9.0   | 45   | 1.6504          | 0.2539    | 0.2617 | 0.2578 | 0.6218   |
| 2.3521        | 10.0  | 50   | 1.4801          | 0.3607    | 0.3787 | 0.3695 | 0.6782   |
| 2.3521        | 11.0  | 55   | 1.3417          | 0.3933    | 0.433  | 0.4122 | 0.7021   |
| 1.6185        | 12.0  | 60   | 1.2333          | 0.4054    | 0.4795 | 0.4394 | 0.7203   |
| 1.6185        | 13.0  | 65   | 1.1490          | 0.4307    | 0.5125 | 0.4680 | 0.7347   |
| 1.6185        | 14.0  | 70   | 1.0750          | 0.4412    | 0.543  | 0.4868 | 0.7503   |
| 1.6185        | 15.0  | 75   | 1.0179          | 0.4816    | 0.5637 | 0.5195 | 0.7619   |
| 1.1438        | 16.0  | 80   | 0.9774          | 0.4899    | 0.578  | 0.5303 | 0.7689   |
| 1.1438        | 17.0  | 85   | 0.9475          | 0.5005    | 0.5955 | 0.5439 | 0.7743   |
| 1.1438        | 18.0  | 90   | 0.9192          | 0.5082    | 0.6078 | 0.5535 | 0.7788   |
| 1.1438        | 19.0  | 95   | 0.8923          | 0.5151    | 0.6085 | 0.5579 | 0.7828   |
| 0.8863        | 20.0  | 100  | 0.8691          | 0.5263    | 0.6242 | 0.5711 | 0.7882   |
| 0.8863        | 21.0  | 105  | 0.8604          | 0.5358    | 0.6342 | 0.5809 | 0.7907   |
| 0.8863        | 22.0  | 110  | 0.8474          | 0.5429    | 0.641  | 0.5879 | 0.7946   |
| 0.8863        | 23.0  | 115  | 0.8362          | 0.5493    | 0.644  | 0.5929 | 0.7969   |
| 0.7361        | 24.0  | 120  | 0.8284          | 0.5531    | 0.6512 | 0.5982 | 0.7994   |
| 0.7361        | 25.0  | 125  | 0.8325          | 0.5555    | 0.6565 | 0.6018 | 0.8001   |
| 0.7361        | 26.0  | 130  | 0.8156          | 0.5686    | 0.6562 | 0.6093 | 0.8035   |
| 0.7361        | 27.0  | 135  | 0.8177          | 0.5634    | 0.6625 | 0.6089 | 0.8039   |
| 0.6449        | 28.0  | 140  | 0.8152          | 0.5643    | 0.6567 | 0.6070 | 0.8036   |
| 0.6449        | 29.0  | 145  | 0.8109          | 0.5700    | 0.6647 | 0.6137 | 0.8066   |
| 0.6449        | 30.0  | 150  | 0.8164          | 0.5697    | 0.6653 | 0.6138 | 0.8055   |
| 0.6449        | 31.0  | 155  | 0.8081          | 0.5742    | 0.6627 | 0.6153 | 0.8085   |
| 0.5912        | 32.0  | 160  | 0.8130          | 0.5687    | 0.6677 | 0.6142 | 0.8067   |
| 0.5912        | 33.0  | 165  | 0.8048          | 0.5779    | 0.6637 | 0.6179 | 0.8089   |
| 0.5912        | 34.0  | 170  | 0.8096          | 0.5760    | 0.669  | 0.6190 | 0.8085   |
| 0.5912        | 35.0  | 175  | 0.8063          | 0.5790    | 0.6677 | 0.6202 | 0.8091   |
| 0.5625        | 36.0  | 180  | 0.8052          | 0.5755    | 0.6673 | 0.6180 | 0.8094   |
| 0.5625        | 37.0  | 185  | 0.8063          | 0.5753    | 0.6667 | 0.6176 | 0.8093   |
| 0.5625        | 38.0  | 190  | 0.8055          | 0.5783    | 0.6677 | 0.6198 | 0.8103   |
| 0.5625        | 39.0  | 195  | 0.8052          | 0.5792    | 0.668  | 0.6205 | 0.8099   |
| 0.5442        | 40.0  | 200  | 0.8052          | 0.5798    | 0.6685 | 0.6210 | 0.8097   |
| 0.5442        | 41.0  | 205  | 0.8055          | 0.5784    | 0.6683 | 0.6201 | 0.8098   |
| 0.5442        | 42.0  | 210  | 0.8056          | 0.5789    | 0.6685 | 0.6205 | 0.8100   |
| 0.5442        | 43.0  | 215  | 0.8057          | 0.5786    | 0.6683 | 0.6202 | 0.8100   |
| 0.5397        | 44.0  | 220  | 0.8057          | 0.5786    | 0.6683 | 0.6202 | 0.8099   |
| 0.5397        | 45.0  | 225  | 0.8058          | 0.5786    | 0.6683 | 0.6202 | 0.8099   |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1