Converting Vertex-Colored Meshes to Textured Meshes
This article is also available in Chinese 简体中文.
Convert vertex-colored meshes to UV-mapped, textured meshes.
Introduction
Vertex colors are a straightforward way to add color information directly to a mesh's vertices. This is often the way generative 3D models like InstantMesh produce meshes. However, most applications prefer UV-mapped, textured meshes.
This tutorial walks through a quick solution to convert vertex-colored meshes to UV-mapped, textured meshes. This includes The Short Version to get results quickly, and The Long Version for an in-depth walkthrough.
The Short Version
Install the InstantTexture library for easy conversion. This is a small library we wrote that implements the steps described in The Long Version below.
pip install git+https://github.com/dylanebert/InstantTexture
Usage
The code below converts a vertex-colored .obj
mesh to a UV-mapped, textured .glb
mesh and saves it to output.glb
.
from instant_texture import Converter
input_mesh_path = "https://raw.githubusercontent.com/dylanebert/InstantTexture/refs/heads/main/examples/chair.obj"
converter = Converter()
converter.convert(input_mesh_path)
Let's visualize the output mesh.
import trimesh
mesh = trimesh.load("output.glb")
mesh.show()
That's it!
For a detailed walkthrough, continue reading.
The Long Version
Install the following dependencies:
- numpy for numerical operations
- trimesh for loading and saving mesh data
- xatlas for generating uv maps
- Pillow for image processing
- opencv-python for image processing
- httpx for downloading the input mesh
pip install numpy trimesh xatlas opencv-python pillow httpx
Import dependencies.
import cv2
import numpy as np
import trimesh
import xatlas
from PIL import Image, ImageFilter
Load the vertex-colored input mesh. This should be a .obj
file located at input_mesh_path
.
If it's a local file, use trimesh.load()
instead of trimesh.load_remote()
.
mesh = trimesh.load_remote(input_mesh_path)
mesh.show()
Access the vertex colors of the mesh.
If this fails, ensure the mesh is a valid .obj
file with vertex colors.
vertex_colors = mesh.visual.vertex_colors
Generate the uv map using xatlas.
This is the most time-consuming part of the process.
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
Remap the vertices and vertex colors to the uv map.
vertices = mesh.vertices[vmapping]
vertex_colors = vertex_colors[vmapping]
mesh.vertices = vertices
mesh.faces = indices
Define the desired texture size.
Construct a texture buffer that is upscaled by an upscale_factor
to create a higher quality texture.
texture_size = 1024
upscale_factor = 2
buffer_size = texture_size * upscale_factor
texture_buffer = np.zeros((buffer_size, buffer_size, 4), dtype=np.uint8)
Fill in the texture of the UV-mapped mesh using barycentric interpolation.
- Barycentric interpolation: Computes the interpolated color at point
p
inside a triangle defined by verticesv0
,v1
, andv2
with corresponding colorsc0
,c1
, andc2
. - Point-in-Triangle test: Determines if a point
p
lies within a triangle defined by verticesv0
,v1
, andv2
. - Texture-filling loop:
- Iterate over each face of the mesh.
- Retrieve the UV coordinates (
uv0
,uv1
,uv2
) and colors (c0
,c1
,c2
) for the current face. - Convert the UV coordinates to buffer coordinates.
- Determine the bounding box of the triangle on the texture buffer.
- For each pixel in the bounding box, check if the pixel lies within the triangle using the point-in-triangle test.
- If inside, compute the interpolated color using barycentric interpolation.
- Assign the color to the corresponding pixel in the texture buffer.
# Barycentric interpolation
def barycentric_interpolate(v0, v1, v2, c0, c1, c2, p):
v0v1 = v1 - v0
v0v2 = v2 - v0
v0p = p - v0
d00 = np.dot(v0v1, v0v1)
d01 = np.dot(v0v1, v0v2)
d11 = np.dot(v0v2, v0v2)
d20 = np.dot(v0p, v0v1)
d21 = np.dot(v0p, v0v2)
denom = d00 * d11 - d01 * d01
if abs(denom) < 1e-8:
return (c0 + c1 + c2) / 3
v = (d11 * d20 - d01 * d21) / denom
w = (d00 * d21 - d01 * d20) / denom
u = 1.0 - v - w
u = np.clip(u, 0, 1)
v = np.clip(v, 0, 1)
w = np.clip(w, 0, 1)
interpolate_color = u * c0 + v * c1 + w * c2
return np.clip(interpolate_color, 0, 255)
# Point-in-Triangle test
def is_point_in_triangle(p, v0, v1, v2):
def sign(p1, p2, p3):
return (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1])
d1 = sign(p, v0, v1)
d2 = sign(p, v1, v2)
d3 = sign(p, v2, v0)
has_neg = (d1 < 0) or (d2 < 0) or (d3 < 0)
has_pos = (d1 > 0) or (d2 > 0) or (d3 > 0)
return not (has_neg and has_pos)
# Texture-filling loop
for face in mesh.faces:
uv0, uv1, uv2 = uvs[face]
c0, c1, c2 = vertex_colors[face]
uv0 = (uv0 * (buffer_size - 1)).astype(int)
uv1 = (uv1 * (buffer_size - 1)).astype(int)
uv2 = (uv2 * (buffer_size - 1)).astype(int)
min_x = max(int(np.floor(min(uv0[0], uv1[0], uv2[0]))), 0)
max_x = min(int(np.ceil(max(uv0[0], uv1[0], uv2[0]))), buffer_size - 1)
min_y = max(int(np.floor(min(uv0[1], uv1[1], uv2[1]))), 0)
max_y = min(int(np.ceil(max(uv0[1], uv1[1], uv2[1]))), buffer_size - 1)
for y in range(min_y, max_y + 1):
for x in range(min_x, max_x + 1):
p = np.array([x + 0.5, y + 0.5])
if is_point_in_triangle(p, uv0, uv1, uv2):
color = barycentric_interpolate(uv0, uv1, uv2, c0, c1, c2, p)
texture_buffer[y, x] = np.clip(color, 0, 255).astype(
np.uint8
)
Let's visualize how the texture looks so far.
from IPython.display import display
image_texture = Image.fromarray(texture_buffer)
display(image_texture)
As we can see, the texture has a lot of holes.
To correct for this, we'll combine 4 techniques:
- Inpainting: Fill in the holes using the average color of the surrounding pixels.
- Median filter: Remove noise by replacing each pixel with the median color of its surrounding pixels.
- Gaussian blur: Smooth out the texture to remove any remaining noise.
- Downsample: Resize down to
texture_size
with LANCZOS resampling.
# Inpainting
image_bgra = texture_buffer.copy()
mask = (image_bgra[:, :, 3] == 0).astype(np.uint8) * 255
image_bgr = cv2.cvtColor(image_bgra, cv2.COLOR_BGRA2BGR)
inpainted_bgr = cv2.inpaint(
image_bgr, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA
)
inpainted_bgra = cv2.cvtColor(inpainted_bgr, cv2.COLOR_BGR2BGRA)
texture_buffer = inpainted_bgra[::-1]
image_texture = Image.fromarray(texture_buffer)
# Median filter
image_texture = image_texture.filter(ImageFilter.MedianFilter(size=3))
# Gaussian blur
image_texture = image_texture.filter(ImageFilter.GaussianBlur(radius=1))
# Downsample
image_texture = image_texture.resize((texture_size, texture_size), Image.LANCZOS)
# Display the final texture
display(image_texture)
As we can see, the texture is now much smoother and has no holes.
This can be further improved with more advanced techniques or manual texture editing.
Finally, we can construct a new mesh with the generated uv coordinates and texture.
material = trimesh.visual.material.PBRMaterial(
baseColorFactor=[1.0, 1.0, 1.0, 1.0],
baseColorTexture=image_texture,
metallicFactor=0.0,
roughnessFactor=1.0,
)
visuals = trimesh.visual.TextureVisuals(uv=uvs, material=material)
mesh.visual = visuals
mesh.show()
Et voilà! The mesh is UV-mapped and textured.
To export it when running locally, call mesh.export("output.glb")
.
Limitations
As you can see, the mesh still has many small artifacts.
The quality of the UV map and texture are also far below the standards of a production-ready mesh.
However, if you're looking for a quick solution to map from a vertex-colored mesh to a UV-mapped mesh, then this approach may be useful for you.
Conclusion
This tutorial walked through how to convert a vertex-colored mesh to a UV-mapped, textured mesh.
If you have any questions or feedback, please feel free to open an issue on GitHub or on the Space.
Thank you for reading!