Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

postOpTranscriptAnalyzer

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 . It achieves the following results on the evaluation set:

  • Loss: 0.8360

Model description

The purpose of this model is to analyze the performance of healthcare professionals in providing post-operative instructions, based on a transcript of their conversations.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.9739 0.1739 1 0.9650
0.8749 0.3478 2 0.9442
0.896 0.6957 4 0.8696
0.8791 1.0435 6 0.8514
0.8063 1.3043 8 0.8326
0.7643 1.6522 10 0.8248
0.8239 2.0 12 0.8203
0.6914 2.2609 14 0.8261
0.6751 2.6087 16 0.8356
0.6157 2.9565 18 0.8357
0.5871 3.2174 20 0.8360

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: '<s>'
  eos_token: '</s>'
  unk_token: '<unk>'

hub_model_id: bmezgebu/postOpTranscriptAnalyzer
push_to_hub: True

Downloads last month
0
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bmezgebu/postOpTranscriptAnalyzer

Finetuned
(692)
this model