postOpTranscriptAnalyzer
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 . It achieves the following results on the evaluation set:
- Loss: 0.8360
Model description
The purpose of this model is to analyze the performance of healthcare professionals in providing post-operative instructions, based on a transcript of their conversations.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9739 | 0.1739 | 1 | 0.9650 |
0.8749 | 0.3478 | 2 | 0.9442 |
0.896 | 0.6957 | 4 | 0.8696 |
0.8791 | 1.0435 | 6 | 0.8514 |
0.8063 | 1.3043 | 8 | 0.8326 |
0.7643 | 1.6522 | 10 | 0.8248 |
0.8239 | 2.0 | 12 | 0.8203 |
0.6914 | 2.2609 | 14 | 0.8261 |
0.6751 | 2.6087 | 16 | 0.8356 |
0.6157 | 2.9565 | 18 | 0.8357 |
0.5871 | 3.2174 | 20 | 0.8360 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: '<s>'
eos_token: '</s>'
unk_token: '<unk>'
hub_model_id: bmezgebu/postOpTranscriptAnalyzer
push_to_hub: True
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bmezgebu/postOpTranscriptAnalyzer
Base model
mistralai/Mistral-7B-v0.1