AdaptiveLayers
Collection
.
•
4 items
•
Updated
[n_layers_per_step = -1, last_layer_weight = 1 * (model_layers-1), prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine]
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm")
# Run inference
sentences = [
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
'The swimmer almost drowned after being sucked under a fast current.',
'A group of people wait in a line.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6578 |
cosine_accuracy_threshold | 0.7229 |
cosine_f1 | 0.7058 |
cosine_f1_threshold | 0.6019 |
cosine_precision | 0.5867 |
cosine_recall | 0.8856 |
cosine_ap | 0.6972 |
dot_accuracy | 0.6157 |
dot_accuracy_threshold | 240.6936 |
dot_f1 | 0.6995 |
dot_f1_threshold | 180.5902 |
dot_precision | 0.5604 |
dot_recall | 0.9305 |
dot_ap | 0.6228 |
manhattan_accuracy | 0.6659 |
manhattan_accuracy_threshold | 281.6326 |
manhattan_f1 | 0.7097 |
manhattan_f1_threshold | 315.9025 |
manhattan_precision | 0.6168 |
manhattan_recall | 0.8354 |
manhattan_ap | 0.711 |
euclidean_accuracy | 0.6627 |
euclidean_accuracy_threshold | 14.1948 |
euclidean_f1 | 0.7064 |
euclidean_f1_threshold | 17.0041 |
euclidean_precision | 0.5816 |
euclidean_recall | 0.8995 |
euclidean_ap | 0.7094 |
max_accuracy | 0.6659 |
max_accuracy_threshold | 281.6326 |
max_f1 | 0.7097 |
max_f1_threshold | 315.9025 |
max_precision | 0.6168 |
max_recall | 0.9305 |
max_ap | 0.711 |
sentence1
, sentence2
, and label
sentence1 | sentence2 | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
sentence1 | sentence2 | label |
---|---|---|
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
Children smiling and waving at camera |
There are children present |
0 |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
0 |
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 6,
"prior_layers_weight": 0.85,
"kl_div_weight": 2,
"kl_temperature": 10
}
premise
, hypothesis
, and label
premise | hypothesis | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
premise | hypothesis | label |
---|---|---|
This church choir sings to the masses as they sing joyous songs from the book at a church. |
The church has cracks in the ceiling. |
0 |
This church choir sings to the masses as they sing joyous songs from the book at a church. |
The church is filled with song. |
1 |
A woman with a green headscarf, blue shirt and a very big grin. |
The woman is young. |
0 |
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 6,
"prior_layers_weight": 0.85,
"kl_div_weight": 2,
"kl_temperature": 10
}
eval_strategy
: stepsper_device_train_batch_size
: 42per_device_eval_batch_size
: 32learning_rate
: 1e-06weight_decay
: 1e-08num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.2save_safetensors
: Falsefp16
: Truehub_model_id
: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy
: checkpointbatch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 42per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 1e-08adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy
: checkpointhub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | loss | max_ap |
---|---|---|---|---|
0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 |
0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 |
0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 |
0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 |
0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 |
0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 |
0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 |
0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 |
0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 |
0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 |
0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 |
0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 |
0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 |
0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 |
0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 |
0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 |
0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 |
0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 |
0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
microsoft/deberta-v3-small