|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:314315 |
|
- loss:AdaptiveLayerLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: microsoft/deberta-v3-small |
|
datasets: |
|
- stanfordnlp/snli |
|
- sentence-transformers/stsb |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
widget: |
|
- source_sentence: The pitcher is pitching the ball in a game of baseball. |
|
sentences: |
|
- the lady digs into the ground |
|
- A group of people are sitting at tables. |
|
- The pitcher throws the ball. |
|
- source_sentence: People are conversing at a dining table under a canopy. |
|
sentences: |
|
- A canine is using his legs. |
|
- The people are creative. |
|
- People at a party are seated for dinner on the lawn. |
|
- source_sentence: Two teenage girls conversing next to lockers. |
|
sentences: |
|
- Girls talking about their problems next to lockers. |
|
- A group of people play in the ocean. |
|
- The man is testing the bike. |
|
- source_sentence: A young boy in a hoodie climbs a red slide sitting on a red and |
|
green checkered background. |
|
sentences: |
|
- People are buying food from a street vendor. |
|
- A boy is playing. |
|
- A dog outside digging. |
|
- source_sentence: A professional swimmer spits water out after surfacing while grabbing |
|
the hand of someone helping him back to land. |
|
sentences: |
|
- A group of people wait in a line. |
|
- A tourist has his picture taken on Easter Island. |
|
- The swimmer almost drowned after being sucked under a fast current. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on microsoft/deberta-v3-small |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7641416788909702 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.763668633314844 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7808845626705342 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.783960481366303 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7714319160162553 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7750607015673249 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.587659176024498 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6010467058509925 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7808845626705342 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.783960481366303 |
|
name: Spearman Max |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.6773826673743271 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.5830236673355103 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.7209834880077135 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.5085207223892212 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.6137273007079102 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.873667299547247 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.7219177301725319 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.6389415421942528 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 45.1016845703125 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.7090406632451638 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 32.459449768066406 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.5775450202131569 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.9180663064115671 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.6795197111227502 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.6625217984684206 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 158.29489135742188 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.7041269465332466 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 178.5047607421875 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.5921131248755228 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8684095224185775 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.7054112942825768 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.6578967321252559 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 7.951424598693848 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.7015471831817645 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 9.045232772827148 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.5888767720828789 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.8675332262304659 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.7024193897121154 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.6773826673743271 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 158.29489135742188 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.7209834880077135 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 178.5047607421875 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.6137273007079102 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.9180663064115671 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.7219177301725319 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on microsoft/deberta-v3-small |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll") |
|
# Run inference |
|
sentences = [ |
|
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.', |
|
'The swimmer almost drowned after being sucked under a fast current.', |
|
'A group of people wait in a line.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7641 | |
|
| **spearman_cosine** | **0.7637** | |
|
| pearson_manhattan | 0.7809 | |
|
| spearman_manhattan | 0.784 | |
|
| pearson_euclidean | 0.7714 | |
|
| spearman_euclidean | 0.7751 | |
|
| pearson_dot | 0.5877 | |
|
| spearman_dot | 0.601 | |
|
| pearson_max | 0.7809 | |
|
| spearman_max | 0.784 | |
|
|
|
#### Binary Classification |
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.6774 | |
|
| cosine_accuracy_threshold | 0.583 | |
|
| cosine_f1 | 0.721 | |
|
| cosine_f1_threshold | 0.5085 | |
|
| cosine_precision | 0.6137 | |
|
| cosine_recall | 0.8737 | |
|
| cosine_ap | 0.7219 | |
|
| dot_accuracy | 0.6389 | |
|
| dot_accuracy_threshold | 45.1017 | |
|
| dot_f1 | 0.709 | |
|
| dot_f1_threshold | 32.4594 | |
|
| dot_precision | 0.5775 | |
|
| dot_recall | 0.9181 | |
|
| dot_ap | 0.6795 | |
|
| manhattan_accuracy | 0.6625 | |
|
| manhattan_accuracy_threshold | 158.2949 | |
|
| manhattan_f1 | 0.7041 | |
|
| manhattan_f1_threshold | 178.5048 | |
|
| manhattan_precision | 0.5921 | |
|
| manhattan_recall | 0.8684 | |
|
| manhattan_ap | 0.7054 | |
|
| euclidean_accuracy | 0.6579 | |
|
| euclidean_accuracy_threshold | 7.9514 | |
|
| euclidean_f1 | 0.7015 | |
|
| euclidean_f1_threshold | 9.0452 | |
|
| euclidean_precision | 0.5889 | |
|
| euclidean_recall | 0.8675 | |
|
| euclidean_ap | 0.7024 | |
|
| max_accuracy | 0.6774 | |
|
| max_accuracy_threshold | 158.2949 | |
|
| max_f1 | 0.721 | |
|
| max_f1_threshold | 178.5048 | |
|
| max_precision | 0.6137 | |
|
| max_recall | 0.9181 | |
|
| **max_ap** | **0.7219** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### stanfordnlp/snli |
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) |
|
* Size: 314,315 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": -1, |
|
"last_layer_weight": 1, |
|
"prior_layers_weight": 1, |
|
"kl_div_weight": 1.2, |
|
"kl_temperature": 1.2 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.77 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": -1, |
|
"last_layer_weight": 1, |
|
"prior_layers_weight": 1, |
|
"kl_div_weight": 1.2, |
|
"kl_temperature": 1.2 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 5e-06 |
|
- `weight_decay`: 1e-07 |
|
- `warmup_ratio`: 0.33 |
|
- `save_safetensors`: False |
|
- `fp16`: True |
|
- `push_to_hub`: True |
|
- `hub_model_id`: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln |
|
- `hub_strategy`: checkpoint |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-06 |
|
- `weight_decay`: 1e-07 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.33 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: False |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln |
|
- `hub_strategy`: checkpoint |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | max_ap | spearman_cosine | |
|
|:------:|:-----:|:-------------:|:------:|:------:|:---------------:| |
|
| None | 0 | - | 5.4171 | - | 0.4276 | |
|
| 0.1501 | 1474 | 4.9879 | - | - | - | |
|
| 0.3000 | 2947 | - | 2.6463 | 0.6840 | - | |
|
| 0.3001 | 2948 | 3.2669 | - | - | - | |
|
| 0.4502 | 4422 | 2.6363 | - | - | - | |
|
| 0.6000 | 5894 | - | 1.8436 | 0.7014 | - | |
|
| 0.6002 | 5896 | 2.192 | - | - | - | |
|
| 0.7503 | 7370 | 0.8208 | - | - | - | |
|
| 0.9000 | 8841 | - | 1.5551 | 0.7065 | - | |
|
| 0.9003 | 8844 | 0.6161 | - | - | - | |
|
| 1.0504 | 10318 | 1.0301 | - | - | - | |
|
| 1.2000 | 11788 | - | 1.1883 | 0.7131 | - | |
|
| 1.2004 | 11792 | 1.8209 | - | - | - | |
|
| 1.3505 | 13266 | 1.6887 | - | - | - | |
|
| 1.5001 | 14735 | - | 1.1067 | 0.7119 | - | |
|
| 1.5006 | 14740 | 1.6114 | - | - | - | |
|
| 1.6506 | 16214 | 1.0691 | - | - | - | |
|
| 1.8001 | 17682 | - | 1.0872 | 0.7183 | - | |
|
| 1.8007 | 17688 | 0.3982 | - | - | - | |
|
| 1.9507 | 19162 | 0.3659 | - | - | - | |
|
| 2.1001 | 20629 | - | 0.9642 | 0.7221 | - | |
|
| 2.1008 | 20636 | 1.1702 | - | - | - | |
|
| 2.2508 | 22110 | 1.4984 | - | - | - | |
|
| 2.4001 | 23576 | - | 0.9437 | 0.7200 | - | |
|
| 2.4009 | 23584 | 1.4609 | - | - | - | |
|
| 2.5510 | 25058 | 1.4477 | - | - | - | |
|
| 2.7001 | 26523 | - | 0.9428 | 0.7216 | - | |
|
| 2.7010 | 26532 | 0.5802 | - | - | - | |
|
| 2.8511 | 28006 | 0.3297 | - | - | - | |
|
| 3.0 | 29469 | - | 0.9532 | 0.7219 | - | |
|
| None | 0 | - | 2.4079 | 0.7219 | 0.7637 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### AdaptiveLayerLoss |
|
```bibtex |
|
@misc{li20242d, |
|
title={2D Matryoshka Sentence Embeddings}, |
|
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li}, |
|
year={2024}, |
|
eprint={2402.14776}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |