botika's picture
update model card README.md
99b897d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: Indobert-QA-finetuned-squad
    results: []

Indobert-QA-finetuned-squad

This model is a fine-tuned version of Rifky/Indobert-QA on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 15.2477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
1.1181 1.0 5510 4.8523
0.9746 2.0 11020 5.4560
0.8135 3.0 16530 5.7017
0.6964 4.0 22040 6.2898
0.6052 5.0 27550 6.0962
0.512 6.0 33060 6.4996
0.4303 7.0 38570 6.9570
0.3532 8.0 44080 7.4206
0.3199 9.0 49590 7.4004
0.4247 10.0 55100 6.9846
0.3641 11.0 60610 6.8940
0.3277 12.0 66120 7.0796
0.2899 13.0 71630 7.4511
0.2794 14.0 77140 7.2660
0.2496 15.0 82650 7.9774
0.2299 16.0 88160 7.6985
0.2082 17.0 93670 7.8321
0.1975 18.0 99180 8.1735
0.1784 19.0 104690 8.5620
0.1675 20.0 110200 8.7616
0.1613 21.0 115710 8.8350
0.1484 22.0 121220 8.9582
0.1482 23.0 126730 9.0406
0.1381 24.0 132240 8.9652
0.1411 25.0 137750 9.4613
0.1236 26.0 143260 9.6738
0.1216 27.0 148770 9.8708
0.1192 28.0 154280 10.3220
0.12 29.0 159790 10.0470
0.1041 30.0 165300 10.6753
0.1055 31.0 170810 10.2775
0.1083 32.0 176320 10.4515
0.0924 33.0 181830 10.2080
0.0959 34.0 187340 10.8958
0.0978 35.0 192850 10.8256
0.0865 36.0 198360 11.6631
0.0825 37.0 203870 11.9017
0.0807 38.0 209380 11.4407
0.0674 39.0 214890 11.5917
0.0809 40.0 220400 11.4535
0.0708 41.0 225910 12.1592
0.0778 42.0 231420 12.0278
0.0726 43.0 236930 11.7701
0.0627 44.0 242440 12.2976
0.0681 45.0 247950 12.7727
0.0672 46.0 253460 12.8623
0.0608 47.0 258970 12.9669
0.067 48.0 264480 13.4741
0.0625 49.0 269990 13.6245
0.0585 50.0 275500 13.4891
0.0568 51.0 281010 13.4374
0.0583 52.0 286520 12.8947
0.0467 53.0 292030 13.6060
0.0416 54.0 297540 14.3267
0.0504 55.0 303050 13.7715
0.0431 56.0 308560 13.8461
0.0412 57.0 314070 13.7060
0.0383 58.0 319580 14.3548
0.0327 59.0 325090 14.4535
0.0448 60.0 330600 14.2505
0.0409 61.0 336110 13.8177
0.0332 62.0 341620 13.0098
0.0345 63.0 347130 13.8678
0.0267 64.0 352640 14.3916
0.0302 65.0 358150 14.1668
0.0292 66.0 363660 13.6313
0.0302 67.0 369170 14.1120
0.0265 68.0 374680 15.0709
0.0276 69.0 380190 14.6093
0.0223 70.0 385700 15.0999
0.0306 71.0 391210 15.1224
0.0281 72.0 396720 15.5029
0.019 73.0 402230 15.3474
0.02 74.0 407740 14.7976
0.018 75.0 413250 15.3104
0.0184 76.0 418760 15.3137
0.0171 77.0 424270 14.8188
0.0164 78.0 429780 15.4378
0.0165 79.0 435290 15.1186
0.0168 80.0 440800 14.7998
0.0115 81.0 446310 14.4591
0.0138 82.0 451820 15.2517
0.0117 83.0 457330 14.7899
0.0118 84.0 462840 15.5304
0.0119 85.0 468350 14.6794
0.0134 86.0 473860 14.5271
0.0076 87.0 479370 15.7098
0.0076 88.0 484880 14.2286
0.01 89.0 490390 15.2608
0.0094 90.0 495900 14.9055
0.0069 91.0 501410 14.8540
0.0082 92.0 506920 15.2562
0.0068 93.0 512430 14.9342
0.0047 94.0 517940 15.3755
0.0062 95.0 523450 15.2753
0.0046 96.0 528960 15.0191
0.0057 97.0 534470 14.9508
0.0033 98.0 539980 15.4440
0.0045 99.0 545490 15.4171
0.0048 100.0 551000 15.2477

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu102
  • Datasets 2.2.2
  • Tokenizers 0.12.1