bprice9's picture
Update README.md
b0847e4 verified
---
base_model: Writer/Palmyra-Med-70B
tags:
- fp8
- vllm
- medical
- med
license: other
license_name: writer-open-model-license
license_link: https://writer.com/legal/open-model-license/
language:
- en
quantized_by: bprice9
base_model_relation: quantized
pipeline_tag: text-generation
---
# Palmyra-Medical-70B-FP8
This is a quantized version of [Palmyra-Med-70B](https://huggingface.co/Writer/Palmyra-Med-70B), which was developed by Writer.
The original model performance on biomedical benchmarks is 85.87%.
**This quantized version acheives an average score of 85.62%.**
## Model Overview:
- **Model:** Llama based model finetuned to form Palmyra-X-004 and then again to form Palmyra-Med-70B.
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Intended Use Cases:** Palmyra-Medical-70B-FP8 is intended for non-commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **License(s):** [writer-open-model-license](https://writer.com/legal/open-model-license/)
### Writer Resources and Technical Documentation:
+ [Writer Blog](https://writer.com/blog/palmyra-med-fin-models/)
+ [Writer Developer Website](https://dev.writer.com/home/models)
+ [Writer AI Studio](https://writer.com/product/ai-studio/)
+ [Palmyra Model API](https://dev.writer.com/api-guides/chat-completion)
### Model Optimizations
[LLM_Compressor](https://github.com/vllm-project/llm-compressor) library.
Using this optimization, the original FP16 weights and linear activations within the transformer blocks are adjusted to FP8, which decreases the model size and VRAM requirements by 50% overall.
## Deployment with vLLM
This model can be deployed using the [vLLM](https://docs.vllm.ai/en/latest/) library, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "bprice9/Palmyra-Medical-70B-FP8"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.0, top_p=0.9, max_tokens=512, stop_token_ids=[128001, 128009])
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Give a differential for an intrahepatic lesion with early arterial phase enhancement and rapid washout."},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code below.
```python
import torch
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import (
calculate_offload_device_map,
custom_offload_device_map,
)
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
"""
model_stub = "Writer/Palmyra-Med-70B"
model_name = model_stub.split("/")[-1]
device_map = calculate_offload_device_map(
model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype=torch.float16
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_stub, torch_dtype=torch.float16, device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
output_dir = f"./{model_name}-FP8"
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 128
MAX_SEQUENCE_LENGTH = 4096
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
oneshot(
model=model,
output_dir=output_dir,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
save_compressed=True,
)
```
## Evaluation
<table>
<tr>
<td style="width: 20%;"><strong>Biomedical Benchmark</strong>
</td>
<td style="width: 20%;"><strong>Med-PaLM-2 (5-shot)</strong>
</td>
<td style="width: 20%;"><strong>GPT-4</strong>
</td>
<td style="width: 20%;"><strong>Palmyra-Med-70B (Original FP16)</strong>
</td>
<td style="width: 20%;"><strong>Palmyra-Medical-70B-FP8 (This Model)</strong>
</td>
</tr>
<tr>
<td>MMLU Clincal Knowledge
</td>
<td>88.3
</td>
<td>86.0
</td>
<td>90.9
</td>
<td>90.2
</td>
</tr>
<tr>
<td>MMLU Medical Genetics
</td>
<td>90.0
</td>
<td>91.0
</td>
<td>94.0
</td>
<td>93.0
</td>
</tr>
<tr>
<td>MMLU Anatomy
</td>
<td>77.8
</td>
<td>80.0
</td>
<td>83.7
</td>
<td>83.7
</td>
</tr>
<tr>
<td>MMLU Professional Medicine
</td>
<td>95.2
</td>
<td>93.0
</td>
<td>92.7
</td>
<td>92.3
</td>
</tr>
<tr>
<td>MMLU College Biology
</td>
<td>94.4
</td>
<td>95.1
</td>
<td>94.4
</td>
<td>93.8
</td>
</tr>
<tr>
<td>MMLU College Medicine
</td>
<td>80.9
</td>
<td>76.9
</td>
<td>84.4
</td>
<td>84.4
</td>
</tr>
<tr>
<td>MedQA 4-options
</td>
<td>79.9
</td>
<td>78.9
</td>
<td>78.6
</td>
<td>79.5
</td>
</tr>
<tr>
<td>PubMed QA
</td>
<td>79.2
</td>
<td>75.2
</td>
<td>79.6
</td>
<td>78.0
</td>
</tr>
<tr>
<tr>
<td>MedMCQA
</td>
<td>71.3
</td>
<td>69.5
</td>
<td>74.4
</td>
<td>75.7
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>84.1</strong>
</td>
<td><strong>82.8</strong>
</td>
<td><strong>85.9</strong>
</td>
<td><strong>85.6</strong>
</td>
</tr>
</table>
### Citation and Related Information Provided by Writer
To cite this model:
```
@misc{Palmyra-Med-70B,
author = {Writer Engineering team},
title = {{Palmyra-Med-70b: A powerful LLM designed for healthcare}},
howpublished = {\url{https://dev.writer.com}},
year = 2024,
month = June
}
```