whisper-medium-med / README.md
bqtsio's picture
End of training
817d836 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical STT
          type: Dev372/Medical_STT_Dataset_1.1
        metrics:
          - name: Wer
            type: wer
            value: 3.2511210762331837

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium.en on the Medical STT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0977
  • Wer Ortho: 5.4215
  • Wer: 3.2511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0481 1.2563 500 0.0977 5.4215 3.2511

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0