flan-t5-cnn / README.md
yadheedhya's picture
Update README.md
08a65c9
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - cnn_dailymail
metrics:
  - rouge
model-index:
  - name: base
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: cnn_dailymail 3.0.0
          type: cnn_dailymail
          config: 3.0.0
          split: validation
          args: 3.0.0
        metrics:
          - name: Rouge1
            type: rouge
            value: 42.1388

base

model image

This model is a fine-tuned version of google/flan-t5-base on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4232
  • Rouge1: 42.1388
  • Rouge2: 19.7696
  • Rougel: 30.1512
  • Rougelsum: 39.3222
  • Gen Len: 71.8562

Model description

  • Model type: Language model
  • Language(s) (NLP): English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
  • License: Apache 2.0
  • Related Models: All FLAN-T5 Checkpoints
  • Original Checkpoints: All Original FLAN-T5 Checkpoints
  • Resources for more information:

Intended uses & limitations

The information below in this section are copied from the model's official model card:

Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application,

Training and evaluation data

  • Loss: 1.4232
  • Rouge1: 42.1388
  • Rouge2: 19.7696
  • Rougel: 30.1512
  • Rougelsum: 39.3222
  • Gen Len: 71.8562

Training procedure

Training procedure example notebook for flan-T5 and pushing it to hub https://github.com/EveripediaNetwork/ai/blob/main/notebooks/Fine-Tuning-Flan-T5_1.ipynb

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: Constant
  • num_epochs: 3.0

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.12.1