ppo-LunarLander-v2 / config.json
brand25's picture
Upload PPO LunarLander-v2 trained agent
b4866c3
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0092bd8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0092bd80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0092bd8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0092bd81f0>", "_build": "<function ActorCriticPolicy._build at 0x7f0092bd8280>", "forward": "<function ActorCriticPolicy.forward at 0x7f0092bd8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0092bd83a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0092bd8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0092bd84c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0092bd8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0092bd85e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0092bd35d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673252936173388166, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNSHL0MW7E/ekkev0xHgr44Q8o8D9vJuwAAAAAAAAAAM3PPut7Jtj/p8KO9rye8PsWs7jomCZM8AAAAAAAAAADAeZW9PYNeu/5EjzyzcaA8efe7vORXiD0AAIA/AACAPxo/y70K5xq5ogvoN4VNATM0KZK76CQKtwAAgD8AAIA/2vsJvvMz5D4pHaC93U+7vlQgy72KP2e9AAAAAAAAAADmwfC99pgcvKpuej5HCPq990iovLymSb4AAIA/AACAP3qFGb446YM+cJm4vJrHRb7NWYy9xrx9PQAAAAAAAAAAo413vo2Juj869ii/3HjKvm5NqL4eH4u+AAAAAAAAAADmlAw9Ni41vGJv/b3SS/Q7zhObPSjb1LwAAIA/AACAP5ohhbwKrZ0/LqoFvseiI79/lwu89KcUuwAAAAAAAAAAgIN8vYyHqj/+T9S+adXYvtCZh729STa+AAAAAAAAAACAV0I9fQy8P7KUkz4w4nG8ycv5PO4fFD4AAAAAAAAAALMwlz3HJVY/1Wi2PGT1FL90DO89peF2uwAAAAAAAAAAxZ6Rvg5fzbwlk9e+/XhPPdvP3j4ioZk+AAAAAAAAAABNVCS+6RlIP6KPj739hxW/KiyYvWU3GDoAAAAAAAAAAADQHjzTAD8/AXeKvO65BL91elY9g8SAPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3UHsTCFmb0CUhpRSlIwBbJRLz4wBdJRHQKJY/ZXdTHd1fZQoaAZoCWgPQwgGn+bkxY9vQJSGlFKUaBVLwGgWR0CiWQOpKjBVdX2UKGgGaAloD0MIk3GMZA85c0CUhpRSlGgVS95oFkdAolkNiONo8XV9lChoBmgJaA9DCBiUaTQ5onFAlIaUUpRoFUv4aBZHQKJZtiPyTZB1fZQoaAZoCWgPQwhVT+Yf/ftwQJSGlFKUaBVLtGgWR0CiWbkvCdjHdX2UKGgGaAloD0MId/NUh9ygRUCUhpRSlGgVS9RoFkdAolnfz19ORHV9lChoBmgJaA9DCLq9pDFaWWxAlIaUUpRoFUvYaBZHQKJagwiaAnV1fZQoaAZoCWgPQwi0WIrkK01xQJSGlFKUaBVL0WgWR0CiWrCliz9kdX2UKGgGaAloD0MI5ljeVY8KckCUhpRSlGgVS9RoFkdAolrF/6O5rnV9lChoBmgJaA9DCPYINUPqwHNAlIaUUpRoFUvyaBZHQKJa0od+5OJ1fZQoaAZoCWgPQwie76fGS31xQJSGlFKUaBVLwGgWR0CiWt/CAMDwdX2UKGgGaAloD0MInRN7aJ+jcECUhpRSlGgVS91oFkdAolslrM1TBXV9lChoBmgJaA9DCML51LGKJ3RAlIaUUpRoFU0SAWgWR0CiW5Vz6rNodX2UKGgGaAloD0MIE4JV9fL7b0CUhpRSlGgVS8loFkdAoluj5TIeYHV9lChoBmgJaA9DCNeIYBxcBnNAlIaUUpRoFUv8aBZHQKJbpN+LFXJ1fZQoaAZoCWgPQwgsnKT54/5xQJSGlFKUaBVNAgFoFkdAolvaEOAiFHV9lChoBmgJaA9DCArbT8a40XFAlIaUUpRoFUvfaBZHQKJb5Sa3I+51fZQoaAZoCWgPQwgyq3e43S1wQJSGlFKUaBVL8mgWR0CiXDn5SFXadX2UKGgGaAloD0MIJ4bkZKITcECUhpRSlGgVS8RoFkdAolxWpEQXh3V9lChoBmgJaA9DCCMva2LBVXFAlIaUUpRoFUveaBZHQKJcqOLBKth1fZQoaAZoCWgPQwjtgVZgSNlrQJSGlFKUaBVNlQFoFkdAoly4vi97GHV9lChoBmgJaA9DCDfg88MIunFAlIaUUpRoFUviaBZHQKJc3cGC7K91fZQoaAZoCWgPQwhQOpFgqjByQJSGlFKUaBVLrmgWR0CiXQ3iR4hVdX2UKGgGaAloD0MIyO4CJUWecECUhpRSlGgVS8doFkdAol1I0l7dBXV9lChoBmgJaA9DCCgoRSt3vG9AlIaUUpRoFUvNaBZHQKJdSNkOI691fZQoaAZoCWgPQwgh5/1/XA1zQJSGlFKUaBVL7mgWR0CiXY243FUAdX2UKGgGaAloD0MID9b/OQyQcUCUhpRSlGgVS+VoFkdAol2/bblA/3V9lChoBmgJaA9DCMri/iOT03FAlIaUUpRoFUu3aBZHQKJtrIEr5Ip1fZQoaAZoCWgPQwhvm6kQD4ZyQJSGlFKUaBVLuGgWR0CibbBXjlxPdX2UKGgGaAloD0MIEyujkc/ab0CUhpRSlGgVS7FoFkdAom3SvcJtznV9lChoBmgJaA9DCJzdWiYDunJAlIaUUpRoFUvzaBZHQKJt/O1v2oN1fZQoaAZoCWgPQwhtc2N6wlVwQJSGlFKUaBVLxmgWR0CibhYLLIPtdX2UKGgGaAloD0MIBADHnr3DcECUhpRSlGgVS8VoFkdAom57JKaodnV9lChoBmgJaA9DCIR/ETRmzXFAlIaUUpRoFU0OAWgWR0CibqkJKJ2udX2UKGgGaAloD0MIQs77/3i+ckCUhpRSlGgVS9FoFkdAom8D+JgssnV9lChoBmgJaA9DCP5fdeQIb3BAlIaUUpRoFUu3aBZHQKJvFKoybhF1fZQoaAZoCWgPQwgTYFj+vIZzQJSGlFKUaBVL3mgWR0CibyCWNWELdX2UKGgGaAloD0MIjSrDuFsSckCUhpRSlGgVS7toFkdAom9hw2l2vHV9lChoBmgJaA9DCNl22hqRDXRAlIaUUpRoFU0eAWgWR0Cib4DTjNpudX2UKGgGaAloD0MIEf5F0JiocECUhpRSlGgVS9NoFkdAonAErqdH2HV9lChoBmgJaA9DCEi/fR24sm5AlIaUUpRoFUvLaBZHQKJwJYukDZF1fZQoaAZoCWgPQwjvcaYJW+1uQJSGlFKUaBVLw2gWR0CicCiNbTttdX2UKGgGaAloD0MI6xnCMUvJbUCUhpRSlGgVTR0BaBZHQKJwNag26091fZQoaAZoCWgPQwhPIOwUK75tQJSGlFKUaBVL0mgWR0CicHZjH4oJdX2UKGgGaAloD0MIaF2j5UAhcUCUhpRSlGgVS6loFkdAonDi7iADrHV9lChoBmgJaA9DCMISDyibKHJAlIaUUpRoFUvgaBZHQKJxiAvtdAx1fZQoaAZoCWgPQwhHqu/8IgNzQJSGlFKUaBVNIQFoFkdAonHgjSofjnV9lChoBmgJaA9DCJAty9flFHJAlIaUUpRoFU0aAWgWR0Cice20Z3s5dX2UKGgGaAloD0MIu31WmSkVc0CUhpRSlGgVS8BoFkdAonI/YHxBmnV9lChoBmgJaA9DCIOHad+c1nXAlIaUUpRoFU1mAWgWR0CicodLQHAzdX2UKGgGaAloD0MIIvq19ROXcUCUhpRSlGgVS/ZoFkdAonKgXQ+lj3V9lChoBmgJaA9DCJ4GDJI+FHJAlIaUUpRoFUvvaBZHQKJy0IKtxMp1fZQoaAZoCWgPQwgKD5pdN5FzQJSGlFKUaBVNqwFoFkdAonLUQwsXi3V9lChoBmgJaA9DCMpqup4oaHJAlIaUUpRoFU0jAWgWR0CiczSbhFVldX2UKGgGaAloD0MIPkLNkCq2cUCUhpRSlGgVS9loFkdAonNHJRwZO3V9lChoBmgJaA9DCDKwjuNHlnBAlIaUUpRoFU0xAWgWR0Cic1PppvgndX2UKGgGaAloD0MIilkvhjJ0ckCUhpRSlGgVS+5oFkdAonNvZyuIRHV9lChoBmgJaA9DCEpfCDmvH3JAlIaUUpRoFU0OAWgWR0Cic+iNKh+OdX2UKGgGaAloD0MIVmXfFcFPcUCUhpRSlGgVTQ8BaBZHQKJz+r5IpYt1fZQoaAZoCWgPQwiXVG03wQdxQJSGlFKUaBVNJwFoFkdAonSUq6OHWXV9lChoBmgJaA9DCN4ehIA8gXFAlIaUUpRoFUvJaBZHQKJ0lI0ZWJd1fZQoaAZoCWgPQwjgL2ZL1mNuQJSGlFKUaBVLt2gWR0CidK2cjJMhdX2UKGgGaAloD0MIaAdcV8yJcECUhpRSlGgVS9doFkdAonTNb9qDb3V9lChoBmgJaA9DCIv8+iE2lkpAlIaUUpRoFUt9aBZHQKJ024xUNrl1fZQoaAZoCWgPQwi3t1uSAzByQJSGlFKUaBVNKAFoFkdAonT/ATIvJ3V9lChoBmgJaA9DCOqwwi2fdnFAlIaUUpRoFUvLaBZHQKJ1JE5Qxet1fZQoaAZoCWgPQwg+B5YjJENyQJSGlFKUaBVLqWgWR0CidYmKhtcfdX2UKGgGaAloD0MIvW987dn6cUCUhpRSlGgVTTwBaBZHQKJ1vzltCRh1fZQoaAZoCWgPQwg0go3r34xwQJSGlFKUaBVL7mgWR0CideDDKoycdX2UKGgGaAloD0MINQ2K5oGMcECUhpRSlGgVS89oFkdAonXzbJwKjXV9lChoBmgJaA9DCOm3rwMnAnNAlIaUUpRoFU0OAWgWR0CidhlV94NadX2UKGgGaAloD0MI7BUW3M94cECUhpRSlGgVS8xoFkdAonaC7VawEHV9lChoBmgJaA9DCHgnnx4bS3JAlIaUUpRoFUvQaBZHQKJ2oUZeiSJ1fZQoaAZoCWgPQwgh6dMqOvxxQJSGlFKUaBVLs2gWR0CidvLvTgEVdX2UKGgGaAloD0MIZp/HKM/8PkCUhpRSlGgVS2JoFkdAonco0XP7enV9lChoBmgJaA9DCNi4/l1fBXNAlIaUUpRoFU1CAWgWR0Cid1R9XtBwdX2UKGgGaAloD0MInL8JhQgGckCUhpRSlGgVS9toFkdAondoS+QEIXV9lChoBmgJaA9DCCV2bW/3+HBAlIaUUpRoFUvqaBZHQKJ3nFspG4J1fZQoaAZoCWgPQwjs3LQZZxBxQJSGlFKUaBVNgAFoFkdAonfM+HJtBXV9lChoBmgJaA9DCGhZ94+F3HFAlIaUUpRoFUvZaBZHQKJ4CGHpKSR1fZQoaAZoCWgPQwhcctwpXUtxQJSGlFKUaBVL+GgWR0CieBu7HyVfdX2UKGgGaAloD0MI5UUm4JeucUCUhpRSlGgVS6toFkdAonhklgMMJHV9lChoBmgJaA9DCM/5KY6D3XJAlIaUUpRoFUvgaBZHQKJ4hoBaLXN1fZQoaAZoCWgPQwjWjAxyVyBxQJSGlFKUaBVL0WgWR0CieImTTvy9dX2UKGgGaAloD0MIevzepr+8ckCUhpRSlGgVTRABaBZHQKJ4kFaB7NV1fZQoaAZoCWgPQwgqj26Exd5yQJSGlFKUaBVNIwFoFkdAonidXPqs2nV9lChoBmgJaA9DCJKtLqdEAnBAlIaUUpRoFUvnaBZHQKJ48G+sYEZ1fZQoaAZoCWgPQwgfSN45lPZvQJSGlFKUaBVLtWgWR0CieUrpJPIodX2UKGgGaAloD0MI+gyoNyMjc0CUhpRSlGgVS99oFkdAonlhlOGj9HV9lChoBmgJaA9DCFnaqblcc3BAlIaUUpRoFUvnaBZHQKJ5nk7wKBx1fZQoaAZoCWgPQwh96lil9NVTQJSGlFKUaBVLe2gWR0Cieh+3pfQbdX2UKGgGaAloD0MIy4Y1lQXIcUCUhpRSlGgVS+hoFkdAonomp4rz5HV9lChoBmgJaA9DCMwHBDrTA3NAlIaUUpRoFUvjaBZHQKJ6PbXYlIF1fZQoaAZoCWgPQwjOx7WhYvZFQJSGlFKUaBVLlGgWR0CiemP/R3NcdX2UKGgGaAloD0MIqrcGtgp0cUCUhpRSlGgVS6loFkdAonqnJcPe6HV9lChoBmgJaA9DCGak3lM5jnNAlIaUUpRoFU0BAWgWR0CievEytV7ydX2UKGgGaAloD0MIcf+R6VCVcUCUhpRSlGgVS/RoFkdAonr0rqdH2HV9lChoBmgJaA9DCMY1PpM9K3JAlIaUUpRoFUvKaBZHQKJ6+GJN0vJ1fZQoaAZoCWgPQwj83qY/u6RwQJSGlFKUaBVNGQFoFkdAonsTXrdFfHV9lChoBmgJaA9DCASuK2aEVyBAlIaUUpRoFUtuaBZHQKJ7HXKbKA91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 738, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}