Edit model card

layoutlm-synthchecking-padding

This model is a fine-tuned version of microsoft/layoutlm-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005
  • Ank Address: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Ank Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Ayee Address: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Ayee Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Icr: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ank Address Ank Name Ayee Address Ayee Name Icr Mount Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3656 1.0 30 0.8294 {'precision': 0.17721518987341772, 'recall': 0.4666666666666667, 'f1': 0.25688073394495414, 'number': 30} {'precision': 0.23076923076923078, 'recall': 0.1, 'f1': 0.13953488372093023, 'number': 30} {'precision': 0.011235955056179775, 'recall': 0.03333333333333333, 'f1': 0.01680672268907563, 'number': 30} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 0.2989 0.4333 0.3537 0.7804
0.418 2.0 60 0.0552 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 0.9666666666666667, 'recall': 0.9666666666666667, 'f1': 0.9666666666666667, 'number': 30} {'precision': 0.9666666666666667, 'recall': 0.9666666666666667, 'f1': 0.9666666666666667, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 0.9889 0.9889 0.9889 0.9984
0.033 3.0 90 0.0022 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0
0.0056 4.0 120 0.0010 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0
0.0032 5.0 150 0.0007 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0
0.0025 6.0 180 0.0006 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0
0.0028 7.0 210 0.0005 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0
0.0022 8.0 240 0.0005 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 30} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.