|
--- |
|
library_name: transformers |
|
language: |
|
- spa |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Tiny 1000 Diverse Audios - vfranchis |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Tiny 1000 Diverse Audios - vfranchis |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the 1000 diverse audios 1.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1835 |
|
- Wer: 42.9577 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 25 |
|
- training_steps: 500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 3.7684 | 0.4425 | 25 | 2.2485 | 135.5131 | |
|
| 1.5347 | 0.8850 | 50 | 0.9286 | 75.5533 | |
|
| 0.8425 | 1.3274 | 75 | 0.5561 | 56.4386 | |
|
| 0.5722 | 1.7699 | 100 | 0.4103 | 43.4608 | |
|
| 0.3867 | 2.2124 | 125 | 0.3423 | 40.5433 | |
|
| 0.3107 | 2.6549 | 150 | 0.2967 | 51.0060 | |
|
| 0.2931 | 3.0973 | 175 | 0.2656 | 78.8732 | |
|
| 0.2031 | 3.5398 | 200 | 0.2421 | 57.8471 | |
|
| 0.2004 | 3.9823 | 225 | 0.2305 | 51.8109 | |
|
| 0.1254 | 4.4248 | 250 | 0.2198 | 22.4346 | |
|
| 0.1332 | 4.8673 | 275 | 0.2070 | 22.2334 | |
|
| 0.1089 | 5.3097 | 300 | 0.2049 | 51.4085 | |
|
| 0.0627 | 5.7522 | 325 | 0.1988 | 28.5714 | |
|
| 0.0959 | 6.1947 | 350 | 0.1948 | 31.6901 | |
|
| 0.0794 | 6.6372 | 375 | 0.1910 | 28.8732 | |
|
| 0.0696 | 7.0796 | 400 | 0.1879 | 43.5614 | |
|
| 0.0458 | 7.5221 | 425 | 0.1861 | 43.4608 | |
|
| 0.0524 | 7.9646 | 450 | 0.1841 | 53.5211 | |
|
| 0.0453 | 8.4071 | 475 | 0.1832 | 40.4427 | |
|
| 0.0485 | 8.8496 | 500 | 0.1835 | 42.9577 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|