File size: 5,024 Bytes
b66b004
 
 
 
af2df4b
b66b004
 
 
 
af2df4b
 
 
b66b004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2df4b
 
 
67a35f2
 
b66b004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2df4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
tags:
- bertopic
library_name: bertopic
license: gpl-3.0
---

# topic_immigration_it

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model built as part of the European project [VALAWAI](www.valawai.eu) and designed for predicting the topic distribution of immigration-related content in Italian language.<br>
The model includes a pointer towards the model to be loaded in with SentenceTransformers, i.e., "sentence-transformers/paraphrase-multilingual-mpnet-base-v2".<br>
The model was fine-tuned on a comprehensive set of tweets representing the information provided by both political entities and news sources on the immigration subject during the 5-year period 2018-2022. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("brema76/topic_immigration_it")

topic_model.get_topic_info()

example_text = "Questo è un esempio di testo sul topic immigrazione, subtopic sbarchi e accoglienza."
topics, probs = topic_model.transform(example_text)

probs = probs / probs.sum()
```

## Topic overview

* Number of topics: 36
* Number of training documents: 159408

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| 0 | salvini - immigrato - ong - straniero - mare | 77801 | Crime | 
| 1 | italia - sicilia - italiano - meloni - aquarius | 27045 | Reception | 
| 2 | libia - libico - seawatch - tunisia - tunisino | 18643 | Sea rescue | 
| 3 | ucraino - trump - profugo - polonia - russia | 10779 | Border crisis | 
| 4 | sardegna - video - lampedusa - notte - algerino | 3478 | Landings | 
| 5 | papa - chiesa - francesco - vescovo - papafrancesco | 3395 | The Church's view | 
| 6 | coronavirus - positivo - virus - ospedale - contagio | 2308 | Coronavirus and its spread | 
| 7 | hotspot - protestare - collasso - centro - lampedusa | 2298 | First reception centers | 
| 8 | camion - arrestato - scafista - arresto - furgone | 1624 | Illegal immigration | 
| 9 | incendio - baobab - tendopoli - moria - fiamma | 1046 | Shanty towns | 
| 10 | reddito - pensione - cittadinanza - euro - investimento | 1028 | Economy | 
| 11 | afghanistan - afgano - talebani - kabul - profugo | 1011 | Humanitarian corridors for refugees | 
| 12 | turismo - turista - vacanza - estate - presenza | 798 | Tourism and vacations | 
| 13 | incinta - bambino - donna - neonato - bimbo | 776 | Pregnancy, parenthood, and children | 
| 14 | scuola - università - studente - tutore - lingua | 651 | Education and School-related themes | 
| 15 | vaccino - vaccinato - vaccinale - vaccinare - covid | 650 | Vaccinations and EU digital Covid certificate | 
| 16 | musumeci - ordinanza - islam - islamico - musulmano | 621 | Islam | 
| 17 | alarmphone - egeo - naufragio - bambino - pericolo | 552 | Shipwrecks | 
| 18 | stupro - sessuale - stuprato - violenza - stuprare | 519 | Sexual violence | 
| 19 | multa - ong - decreto - amp - erostraniero | 517 | NGOs regulation | 
| 20 | razzismo - razzista - odio - razziale - insulto | 422 | Racism and Hatred | 
| 21 | agricoltura - schiavo - schiavitù - agricolo - schiavismo | 409 | Illegal work and exploitation | 
| 22 | tubercoloso - malattia - tbc - salute - pandemia | 361 | Disease transmission | 
| 23 | africa - africano - mission - continente - sviluppo | 353 | Cooperation and Development in Africa | 
| 24 | asilo - giudice - richiedente - tribunale - ricorso | 350 | Right to asylum | 
| 25 | dublino - regolamento - riforma - trattato - superare | 310 | EU regulation | 
| 26 | fake - propaganda - fakenews - news - sapevatelo | 285 | Spread of fake news | 
| 27 | droga - cocaina - hashish - eroina - marijuana | 266 | Drugs and Drug Dealing | 
| 28 | film - miglior - oscar - sorrentino - dogman | 263 | Movies | 
| 29 | gay - lgbt - omosessuale - cassazione - lgbti | 149 | LGBTQ+ and sexual minorities' rights | 
| 30 | qatar - qatargate - panzeri - fifa - mondiale | 129 | Quatargate | 
| 31 | perugia - università - suarez - rettore - universitàstranieri | 127 | Luis Suarez's Italian exam scam | 
| 32 | brexit - regno - unito - inglese - qualificato | 120 | Brexit | 
| 33 | basket - calcio - campionato - squadra - giocatore | 117 | Sports | 
| 34 | profugo - volontario - gualzetti - sottoscrizione - accoglienza | 107 | Donations | 
| 35 | matrimonio - combinato - finto - nozze - fittizio | 100 | Marriages and Fake Unions |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 200
* n_gram_range: (1, 1)
* nr_topics: auto
* seed_topic_list: None
* top_n_words: 15
* verbose: True

## Framework versions

* Numpy: 1.23.5
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 2.0.3
* Scikit-Learn: 1.3.0
* Sentence-transformers: 2.2.2
* Transformers: 4.33.1
* Numba: 0.56.4
* Plotly: 5.16.1
* Python: 3.10.11