|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
license: gpl-3.0 |
|
--- |
|
|
|
# topic_immigration_it |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model built as part of the European project [VALAWAI](https://valawai.eu) and designed for predicting the topic distribution of immigration-related content in Italian language.<br> |
|
The model includes a pointer towards the model to be loaded in with SentenceTransformers, i.e., "sentence-transformers/paraphrase-multilingual-mpnet-base-v2".<br> |
|
The model was fine-tuned on a comprehensive set of tweets representing the information provided by both political entities and news sources on the immigration subject during the 5-year period 2018-2022. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("brema76/topic_immigration_it") |
|
|
|
topic_model.get_topic_info() |
|
|
|
example_text = "Questo è un esempio di testo sul topic immigrazione, subtopic sbarchi e accoglienza." |
|
topics, probs = topic_model.transform(example_text) |
|
|
|
probs = probs / probs.sum() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 36 |
|
* Number of training documents: 159408 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| 0 | salvini - immigrato - ong - straniero - mare | 77801 | Crime | |
|
| 1 | italia - sicilia - italiano - meloni - aquarius | 27045 | Reception | |
|
| 2 | libia - libico - seawatch - tunisia - tunisino | 18643 | Sea rescue | |
|
| 3 | ucraino - trump - profugo - polonia - russia | 10779 | Border crisis | |
|
| 4 | sardegna - video - lampedusa - notte - algerino | 3478 | Landings | |
|
| 5 | papa - chiesa - francesco - vescovo - papafrancesco | 3395 | The Church's view | |
|
| 6 | coronavirus - positivo - virus - ospedale - contagio | 2308 | Coronavirus and its spread | |
|
| 7 | hotspot - protestare - collasso - centro - lampedusa | 2298 | First reception centers | |
|
| 8 | camion - arrestato - scafista - arresto - furgone | 1624 | Illegal immigration | |
|
| 9 | incendio - baobab - tendopoli - moria - fiamma | 1046 | Shanty towns | |
|
| 10 | reddito - pensione - cittadinanza - euro - investimento | 1028 | Economy | |
|
| 11 | afghanistan - afgano - talebani - kabul - profugo | 1011 | Humanitarian corridors for refugees | |
|
| 12 | turismo - turista - vacanza - estate - presenza | 798 | Tourism and vacations | |
|
| 13 | incinta - bambino - donna - neonato - bimbo | 776 | Pregnancy, parenthood, and children | |
|
| 14 | scuola - università - studente - tutore - lingua | 651 | Education and School-related themes | |
|
| 15 | vaccino - vaccinato - vaccinale - vaccinare - covid | 650 | Vaccinations and EU digital Covid certificate | |
|
| 16 | musumeci - ordinanza - islam - islamico - musulmano | 621 | Islam | |
|
| 17 | alarmphone - egeo - naufragio - bambino - pericolo | 552 | Shipwrecks | |
|
| 18 | stupro - sessuale - stuprato - violenza - stuprare | 519 | Sexual violence | |
|
| 19 | multa - ong - decreto - amp - erostraniero | 517 | NGOs regulation | |
|
| 20 | razzismo - razzista - odio - razziale - insulto | 422 | Racism and Hatred | |
|
| 21 | agricoltura - schiavo - schiavitù - agricolo - schiavismo | 409 | Illegal work and exploitation | |
|
| 22 | tubercoloso - malattia - tbc - salute - pandemia | 361 | Disease transmission | |
|
| 23 | africa - africano - mission - continente - sviluppo | 353 | Cooperation and Development in Africa | |
|
| 24 | asilo - giudice - richiedente - tribunale - ricorso | 350 | Right to asylum | |
|
| 25 | dublino - regolamento - riforma - trattato - superare | 310 | EU regulation | |
|
| 26 | fake - propaganda - fakenews - news - sapevatelo | 285 | Spread of fake news | |
|
| 27 | droga - cocaina - hashish - eroina - marijuana | 266 | Drugs and Drug Dealing | |
|
| 28 | film - miglior - oscar - sorrentino - dogman | 263 | Movies | |
|
| 29 | gay - lgbt - omosessuale - cassazione - lgbti | 149 | LGBTQ+ and sexual minorities' rights | |
|
| 30 | qatar - qatargate - panzeri - fifa - mondiale | 129 | Quatargate | |
|
| 31 | perugia - università - suarez - rettore - universitàstranieri | 127 | Luis Suarez's Italian exam scam | |
|
| 32 | brexit - regno - unito - inglese - qualificato | 120 | Brexit | |
|
| 33 | basket - calcio - campionato - squadra - giocatore | 117 | Sports | |
|
| 34 | profugo - volontario - gualzetti - sottoscrizione - accoglienza | 107 | Donations | |
|
| 35 | matrimonio - combinato - finto - nozze - fittizio | 100 | Marriages and Fake Unions | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: True |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 200 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: auto |
|
* seed_topic_list: None |
|
* top_n_words: 15 |
|
* verbose: True |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.23.5 |
|
* HDBSCAN: 0.8.33 |
|
* UMAP: 0.5.3 |
|
* Pandas: 2.0.3 |
|
* Scikit-Learn: 1.3.0 |
|
* Sentence-transformers: 2.2.2 |
|
* Transformers: 4.33.1 |
|
* Numba: 0.56.4 |
|
* Plotly: 5.16.1 |
|
* Python: 3.10.11 |