finetune_mc_20_cot / README.md
brettbbb's picture
End of training
8f25d73
|
raw
history blame
2.34 kB
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_mc_20_cot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_mc_20_cot
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8917 | 1.0 | 70 | 1.7411 |
| 0.2135 | 2.0 | 140 | 2.3727 |
| 0.1702 | 3.0 | 210 | 2.5470 |
| 0.1234 | 4.0 | 280 | 2.8131 |
| 0.0843 | 5.0 | 350 | 3.0446 |
| 0.0478 | 6.0 | 420 | 3.1141 |
| 0.0473 | 7.0 | 490 | 3.2304 |
| 0.0544 | 8.0 | 560 | 3.3806 |
| 0.0289 | 9.0 | 630 | 3.4231 |
| 0.0202 | 10.0 | 700 | 3.5503 |
| 0.0214 | 11.0 | 770 | 3.5892 |
| 0.0261 | 12.0 | 840 | 3.7211 |
| 0.0232 | 13.0 | 910 | 3.8148 |
| 0.0242 | 14.0 | 980 | 3.8177 |
| 0.0198 | 15.0 | 1050 | 3.9079 |
| 0.018 | 16.0 | 1120 | 3.9320 |
| 0.0196 | 17.0 | 1190 | 3.9807 |
| 0.0179 | 18.0 | 1260 | 4.0263 |
| 0.0194 | 19.0 | 1330 | 4.0520 |
| 0.0169 | 20.0 | 1400 | 4.0612 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.14.1