|
--- |
|
language: |
|
- en |
|
- ko |
|
library_name: peft |
|
tags: |
|
- translation |
|
- gemma |
|
base_model: google/gemma-2b |
|
--- |
|
|
|
# Model Card for Model ID |
|
## Model Details |
|
### Model Description |
|
- **Developed by:** [Kang Seok Ju] |
|
- **Contact:** [brildev7@gmail.com] |
|
|
|
## Training Details |
|
### Training Data |
|
https://huggingface.co/datasets/traintogpb/aihub-koen-translation-integrated-tiny-100k |
|
|
|
# Inference Examples |
|
``` |
|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
|
|
model_id = "google/gemma-2b" |
|
peft_model_id = "brildev7/gemma-2b-translation-enko-sft-qlora" |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=False |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
quantization_config=quantization_config, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
token=os.environ['HF_TOKEN'], |
|
device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(peft_model_id) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
# example |
|
sentences = "Is it safe to drink milk and eat chicken?" |
|
texts = prompt_template.format(sentences) |
|
inputs = tokenizer(texts, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=1024) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
- 우유를 마시고, 닭고기를 먹으면 안 됩니까? |
|
|
|
# example |
|
sentences = "What precautions to take during the bird flu outbreak" |
|
texts = prompt_template.format(sentences) |
|
inputs = tokenizer(texts, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=1024) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
- 바이러스 플루 발생 중 취해야 할 예방 조치 |
|
|
|
``` |