base_model: stabilityai/stablelm-zephyr-3b
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Intel/orca_dpo_pairs
license: other
license_link: https://huggingface.co/stabilityai/stablelm-zephyr-3b/blob/main/LICENSE
language:
- en
model_creator: stabilityai
model_name: stablelm-zephyr-3b
model_type: stablelm_epoch
inference: false
tags:
- causal-lm
- stablelm_epoch
pipeline_tag: text-generation
prompt_template: |
<|system|>
{{system_message}}<|endoftext|>
<|user|>
{{prompt}}<|endoftext|>
<|assistant|>
quantized_by: brittlewis12
StableLM Zephyr 3B GGUF
Original model: StableLM Zephyr 3B Model creator: Stability AI
This repo contains GGUF format model files for Stability AI’s StableLM Zephyr 3B.
StableLM Zephyr 3B is a 3 billion parameter instruction tuned inspired by HugginFaceH4's Zephyr 7B training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO), evaluation for this model based on MT Bench and Alpaca Benchmark.
What is GGUF?
GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp b1960 (26d6076)
Prompt template: Zephyr
<|system|>
{{system_message}}<|endoftext|>
<|user|>
{{prompt}}<|endoftext|>
<|assistant|>
Download & run with cnvrs on iPhone, iPad, and Mac!
cnvrs is the best app for private, local AI on your device:
- create & save Characters with custom system prompts & temperature settings
- download and experiment with any GGUF model you can find on HuggingFace!
- make it your own with custom Theme colors
- powered by Metal ⚡️ & Llama.cpp, with haptics during response streaming!
- try it out yourself today, on Testflight!
- follow cnvrs on twitter to stay up to date
Original Model Evaluations:
Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
---|---|---|---|---|
StableLM Zephyr 3B 🪁 | 3B | DPO | 6.64 | 76.00 |
StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
Capybara v1.9 | 3B | dSFT | 5.94 | - |
MPT-Chat | 7B | dSFT | 5.42 | - |
Xwin-LM v0.1 | 7B | dPPO | 6.19 | 87.83 |
Mistral-Instruct v0.1 | 7B | - | 6.84 | - |
Zephyr-7b-α | 7B | dDPO | 6.88 | - |
Zephyr-7b-β | 7B | dDPO | 7.34 | 90.60 |
Falcon-Instruct | 40B | dSFT | 5.17 | 45.71 |
Guanaco | 65B | SFT | 6.41 | 71.80 |
Llama2-Chat | 70B | RLHF | 6.86 | 92.66 |
Vicuna v1.3 | 33B | dSFT | 7.12 | 88.99 |
WizardLM v1.0 | 70B | dSFT | 7.71 | - |
Xwin-LM v0.1 | 70B | dPPO | - | 95.57 |
GPT-3.5-turbo | - | RLHF | 7.94 | 89.37 |
Claude 2 | - | RLHF | 8.06 | 91.36 |
GPT-4 | - | RLHF | 8.99 | 95.28 |
Task | Value |
---|---|
ARC (25-shot) | 47.0 |
HellaSwag (10-shot) | 74.2 |
MMLU (5-shot) | 46.3 |
TruthfulQA (0-shot) | 46.5 |
Winogrande (5-shot) | 65.5 |
GSM8K (5-shot) | 42.3 |
BigBench (Avg) | 35.26 |
AGI Benchmark (Avg) | 33.23 |