Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Solar-10b-32k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 07a361402f0bc462_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/07a361402f0bc462_train_data.json
  type:
    field_instruction: context
    field_output: text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: brixeus/2c0f5c3b-996e-4979-8b38-00036d961fee
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/07a361402f0bc462_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 0f4f8f58-1847-400e-bf37-3596070cc366
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 0f4f8f58-1847-400e-bf37-3596070cc366
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

2c0f5c3b-996e-4979-8b38-00036d961fee

This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-32k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 1.1380
3.3838 0.0012 9 0.7357
2.4402 0.0023 18 0.6394
2.5413 0.0035 27 0.5859
2.0983 0.0047 36 0.5437
2.0247 0.0058 45 0.5169
1.9015 0.0070 54 0.4959
1.8078 0.0081 63 0.4928
1.9434 0.0093 72 0.4722
1.9248 0.0105 81 0.4630
1.9464 0.0116 90 0.4584
1.9743 0.0128 99 0.4576

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for brixeus/2c0f5c3b-996e-4979-8b38-00036d961fee

Adapter
(150)
this model