See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Solar-10b-64k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 66a943142fb9a48b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/66a943142fb9a48b_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: brixeus/9f9f03b3-6c18-4151-857c-071b6fa93274
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/66a943142fb9a48b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 8b419b13-6fcf-4e48-8140-ecdfbe0e186e
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 8b419b13-6fcf-4e48-8140-ecdfbe0e186e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
9f9f03b3-6c18-4151-857c-071b6fa93274
This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0739
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6913 | 0.0033 | 1 | 1.7166 |
4.8936 | 0.1663 | 50 | 1.1983 |
4.8091 | 0.3325 | 100 | 1.1295 |
4.6 | 0.4988 | 150 | 1.1091 |
4.9172 | 0.6650 | 200 | 1.0776 |
4.8636 | 0.8313 | 250 | 1.0597 |
5.3967 | 0.9975 | 300 | 1.0438 |
2.8899 | 1.1638 | 350 | 1.0840 |
3.2167 | 1.3300 | 400 | 1.0739 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for brixeus/9f9f03b3-6c18-4151-857c-071b6fa93274
Base model
NousResearch/Yarn-Solar-10b-64k