Just a test of a very high density DARE ties merge, for benchmarking on the open llm leaderboard.
You probably shouldn't use this model, use this one instead: https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity
mergekit config:
models:
- model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
# no parameters necessary for base model
- model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4
parameters:
weight: 0.19
density: 0.83
- model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k
parameters:
weight: 0.14
density: 0.6
- model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
parameters:
weight: 0.19
density: 0.83
- model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200K-Q
parameters:
weight: 0.14
density: 0.6
- model: /home/alpha/FastModels/ehartford_dolphin-2.2-yi-34b-200k
parameters:
weight: 0.19
density: 0.83
- model: /home/alpha/FastModels/fblgit_una-xaberius-34b-v1beta
parameters:
weight: 0.15
density: 0.08
merge_method: dare_ties
base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
parameters:
int8_mask: true
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.57 |
AI2 Reasoning Challenge (25-Shot) | 66.89 |
HellaSwag (10-Shot) | 85.69 |
MMLU (5-Shot) | 77.35 |
TruthfulQA (0-shot) | 57.63 |
Winogrande (5-shot) | 82.00 |
GSM8k (5-shot) | 59.82 |
- Downloads last month
- 1,259
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-ExtremeDensity
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.890
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.690
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard77.350
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.630
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.000
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.820