brxerq commited on
Commit
c59fa34
1 Parent(s): 0e2accf

Update anti_spoofing.py

Browse files
Files changed (1) hide show
  1. anti_spoofing.py +28 -186
anti_spoofing.py CHANGED
@@ -1,50 +1,15 @@
 
1
  import cv2
2
  import dlib
3
  import numpy as np
4
- import os
5
- import time
6
- import mediapipe as mp
7
  from skimage import feature
8
 
 
9
  class AntiSpoofingSystem:
10
  def __init__(self):
11
  self.detector = dlib.get_frontal_face_detector()
12
- self.anti_spoofing_completed = False
13
- self.blink_count = 0
14
- self.image_captured = False
15
- self.captured_image = None
16
  self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
17
-
18
- self.mp_hands = mp.solutions.hands
19
- self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
20
-
21
- self.cap = cv2.VideoCapture(0)
22
- self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
23
- self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
24
-
25
- self.save_directory = "Person"
26
- if not os.path.exists(self.save_directory):
27
- os.makedirs(self.save_directory)
28
-
29
- self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'Pretrained_yolov4 (1).cfg')
30
- with open('PreTrained_coco.names', 'r') as f:
31
- self.classes_smartphone = f.read().strip().split('\n')
32
-
33
  self.EAR_THRESHOLD = 0.25
34
- self.BLINK_CONSEC_FRAMES = 4
35
-
36
- self.left_eye_state = False
37
- self.right_eye_state = False
38
- self.left_blink_counter = 0
39
- self.right_blink_counter = 0
40
-
41
- self.smartphone_detected = False
42
- self.smartphone_detection_frame_interval = 30
43
- self.frame_count = 0
44
-
45
- # New attributes for student data
46
- self.student_id = None
47
- self.student_name = None
48
 
49
  def calculate_ear(self, eye):
50
  A = np.linalg.norm(eye[1] - eye[5])
@@ -60,165 +25,42 @@ class AntiSpoofingSystem:
60
  lbp_hist /= (lbp_hist.sum() + 1e-5)
61
  return np.sum(lbp_hist[:10]) > 0.3
62
 
63
- def detect_hand_gesture(self, frame):
64
- results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
65
- return results.multi_hand_landmarks is not None
66
-
67
- def detect_smartphone(self, frame):
68
- if self.frame_count % self.smartphone_detection_frame_interval == 0:
69
- blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
70
- self.net_smartphone.setInput(blob)
71
- output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
72
- detections = self.net_smartphone.forward(output_layers_names)
73
-
74
- for detection in detections:
75
- for obj in detection:
76
- scores = obj[5:]
77
- class_id = np.argmax(scores)
78
- confidence = scores[class_id]
79
- if confidence > 0.5 and self.classes_smartphone[class_id] == 'cell phone':
80
- center_x = int(obj[0] * frame.shape[1])
81
- center_y = int(obj[1] * frame.shape[0])
82
- width = int(obj[2] * frame.shape[1])
83
- height = int(obj[3] * frame.shape[0])
84
- left = int(center_x - width / 2)
85
- top = int(center_y - height / 2)
86
-
87
- cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
88
- cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
89
-
90
- self.smartphone_detected = True
91
- self.left_blink_counter = 0
92
- self.right_blink_counter = 0
93
- return
94
-
95
- self.frame_count += 1
96
- self.smartphone_detected = False
97
-
98
- def access_verified_image(self):
99
- ret, frame = self.cap.read()
100
- if not ret:
101
- return None
102
-
103
- # Perform anti-spoofing checks
104
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
105
  faces = self.detector(gray)
106
-
107
- # Check if a face is detected
108
  if len(faces) == 0:
109
- return None
110
-
111
- # Assume the first detected face is the subject
112
  face = faces[0]
113
  landmarks = self.predictor(gray, face)
114
-
115
- # Check for blink detection (assuming you have this method correctly implemented)
116
  leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
117
  rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
 
118
  ear_left = self.calculate_ear(leftEye)
119
  ear_right = self.calculate_ear(rightEye)
120
- if not self.detect_blink(ear_left, ear_right):
121
- return None
122
-
123
- # Check for hand gesture (assuming you have this method correctly implemented)
124
- if not self.detect_hand_gesture(frame):
125
- return None
126
-
127
- # Check if a smartphone is detected
128
- self.detect_smartphone(frame)
129
- if self.smartphone_detected:
130
- return None
131
-
132
- # Check texture for liveness (assuming you have this method correctly implemented)
133
- (x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
134
- expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
135
- max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
136
- if not self.analyze_texture(expanded_region):
137
- return None
138
-
139
- return frame
140
-
141
- def detect_blink(self, left_ear, right_ear):
142
- if self.smartphone_detected:
143
- self.left_eye_state = False
144
- self.right_eye_state = False
145
- self.left_blink_counter = 0
146
- self.right_blink_counter = 0
147
- return False
148
-
149
- if left_ear < self.EAR_THRESHOLD:
150
- if not self.left_eye_state:
151
- self.left_eye_state = True
152
- else:
153
- if self.left_eye_state:
154
- self.left_eye_state = False
155
- self.left_blink_counter += 1
156
-
157
- if right_ear < self.EAR_THRESHOLD:
158
- if not self.right_eye_state:
159
- self.right_eye_state = True
160
- else:
161
- if self.right_eye_state:
162
- self.right_eye_state = False
163
- self.right_blink_counter += 1
164
-
165
- if self.left_blink_counter > 0 and self.right_blink_counter > 0:
166
- self.left_blink_counter = 0
167
- self.right_blink_counter = 0
168
- return True
169
- else:
170
- return False
171
-
172
- def run(self):
173
- ret, frame = self.cap.read()
174
- if not ret:
175
- return None
176
-
177
- # Detect smartphone in the frame
178
- self.detect_smartphone(frame)
179
-
180
- if self.smartphone_detected:
181
- cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
182
- else:
183
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
184
- faces = self.detector(gray)
185
-
186
- for face in faces:
187
- landmarks = self.predictor(gray, face)
188
- leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
189
- rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
190
-
191
- ear_left = self.calculate_ear(leftEye)
192
- ear_right = self.calculate_ear(rightEye)
193
-
194
- if self.detect_blink(ear_left, ear_right):
195
- self.blink_count += 1
196
- cv2.putText(frame, f"Blink Count: {self.blink_count}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
197
 
198
- # Check if conditions for image capture are met
199
- if self.blink_count >= 5 and not self.image_captured:
200
- # Capture the image and reset blink count
201
- self.save_image(frame)
202
- self.blink_count = 0
203
- self.image_captured = True
204
 
205
- return frame
 
206
 
207
- def save_image(self, frame):
208
- # Implement logic to save the frame as an image
209
- timestamp = int(time.time())
210
- image_name = f"captured_{timestamp}.png"
211
- cv2.imwrite(os.path.join(self.save_directory, image_name), frame)
212
- self.captured_image = frame
213
- print(f"Image captured and saved as {image_name}")
214
 
215
- def get_captured_image(self):
216
- # Return the captured image with preprocessing applied (if necessary)
217
- captured_frame = self.captured_image
218
- if captured_frame is not None:
219
- return captured_frame
220
- return None
 
221
 
222
- if __name__ == "__main__":
223
- anti_spoofing_system = AntiSpoofingSystem()
224
- anti_spoofing_system.run()
 
1
+ import gradio as gr
2
  import cv2
3
  import dlib
4
  import numpy as np
 
 
 
5
  from skimage import feature
6
 
7
+ # Initialize your AntiSpoofingSystem class as previously defined
8
  class AntiSpoofingSystem:
9
  def __init__(self):
10
  self.detector = dlib.get_frontal_face_detector()
 
 
 
 
11
  self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  self.EAR_THRESHOLD = 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  def calculate_ear(self, eye):
15
  A = np.linalg.norm(eye[1] - eye[5])
 
25
  lbp_hist /= (lbp_hist.sum() + 1e-5)
26
  return np.sum(lbp_hist[:10]) > 0.3
27
 
28
+ def process_image(self, image):
29
+ # Convert the image to grayscale and detect faces
30
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  faces = self.detector(gray)
32
+
33
+ # If no face is detected, return a message
34
  if len(faces) == 0:
35
+ return "No face detected. Please try again."
36
+
37
+ # Process the first detected face
38
  face = faces[0]
39
  landmarks = self.predictor(gray, face)
 
 
40
  leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
41
  rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
42
+
43
  ear_left = self.calculate_ear(leftEye)
44
  ear_right = self.calculate_ear(rightEye)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ # Determine if a blink is detected
47
+ blink_detected = (ear_left < self.EAR_THRESHOLD and ear_right < self.EAR_THRESHOLD)
48
+ return "Blink detected!" if blink_detected else "No blink detected."
 
 
 
49
 
50
+ # Define the Gradio interface
51
+ anti_spoofing_system = AntiSpoofingSystem()
52
 
53
+ def detect_blink(image):
54
+ result = anti_spoofing_system.process_image(image)
55
+ return result
 
 
 
 
56
 
57
+ iface = gr.Interface(
58
+ fn=detect_blink,
59
+ inputs=gr.Image(shape=(720, 1280)),
60
+ outputs="text",
61
+ title="Anti-Spoofing Detection System",
62
+ description="Upload an image with a face to detect if a blink is detected."
63
+ )
64
 
65
+ # Launch the Gradio interface
66
+ iface.launch()