bsenst commited on
Commit
7cd14d0
·
1 Parent(s): e50edee

commit a2c-PandaReachDense-v2

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -11.17 +/- 3.25
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -18.81 +/- 3.65
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b211e0ce70bfc230521852092a21acea69dc028c009c20dcc9b57e8a855cdcf2
3
- size 103718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98f98a567e172c79310d0c8ab48fe861dabd0844fe1427ece72434d055268af4
3
+ size 108025
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79ea20fede60>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x79ea20fccf00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000,
45
- "_total_timesteps": 1000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1680812870737837029,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDBpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMBPXhT9hbZ6/sz4NP7ArJT/A4XW/p2RmP7+EfD/QeNU/Uw4aP93Xar906Ww/x4/Nv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DBpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj2UdJRidS4=",
59
- "achieved_goal": "[[0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]]",
60
- "desired_goal": "[[ 1.045626 -1.237713 0.55173796]\n [ 0.64519787 -0.9604759 0.89997333]\n [ 0.98640054 1.6677494 0.6017811 ]\n [-0.9173563 0.9254372 -1.6059502 ]]",
61
- "observation": "[[0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMJcGNL3GePW9y539Pe18nb2BtUo9bxX+PciTAz4zHak9hGdlPreXdLosZd+9SAWMPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.0439516 -0.11985926 0.12383612]\n [-0.07689843 0.0494895 0.12406432]\n [ 0.12849343 0.08257522 0.2240277 ]\n [-0.00093305 -0.10907969 0.2734778 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gASVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxv1HpkPvIMCUhpRSlIwBbJRLMowBdJRHP/IkpZwGW2R1fZQoaAZoCWgPQwh7L75oj58lwJSGlFKUaBVLMmgWRz/uy0rsjVx0dX2UKGgGaAloD0MI3bOu0XJYJsCUhpRSlGgVSzJoFkc/6V+1Bt1p03V9lChoBmgJaA9DCF2MgXUc5yrAlIaUUpRoFUsyaBZHP+PpFkQPI4l1fZQoaAZoCWgPQwg5Drxa7iAzwJSGlFKUaBVLMmgWRz/7OQMhHLA6dX2UKGgGaAloD0MIXaeRlsr7J8CUhpRSlGgVSzJoFkc/+Hi1iONo8XV9lChoBmgJaA9DCCP3dHXHOjDAlIaUUpRoFUsyaBZHP/XL/jsD4g11fZQoaAZoCWgPQwjzBS0kYFQuwJSGlFKUaBVLMmgWRz/zD6vaDf3wdX2UKGgGaAloD0MIN6lorP0tMcCUhpRSlGgVSzJoFkdAAkFMZgogFHV9lChoBmgJaA9DCMZq8/+qSy/AlIaUUpRoFUsyaBZHQADh9LHuJDV1fZQoaAZoCWgPQwjisZ/FUnQfwJSGlFKUaBVLMmgWRz//E2xY7q6fdX2UKGgGaAloD0MIrUz4pX6eG8CUhpRSlGgVSzJoFkc//FV/+bVjJHV9lChoBmgJaA9DCHgmNEksfTHAlIaUUpRoFUsyaBZHQAarfDUExIt1fZQoaAZoCWgPQwhrRDAOLsUgwJSGlFKUaBVLMmgWR0AFTUoa1kUcdX2UKGgGaAloD0MIB5s6j4ovK8CUhpRSlGgVSzJoFkdAA/ZntfG+9XV9lChoBmgJaA9DCEFGQIUjYCfAlIaUUpRoFUsyaBZHQAKakIomXw91fZQoaAZoCWgPQwiCixU1mMYZwJSGlFKUaBVLMmgWR0ALOCuloDgZdX2UKGgGaAloD0MIYw6CjlaFGMCUhpRSlGgVSzJoFkdACdiWE9Mbm3V9lChoBmgJaA9DCMEffv57kDDAlIaUUpRoFUsyaBZHQAh/foA4n4R1fZQoaAZoCWgPQwjKwWwCDL8wwJSGlFKUaBVLMmgWR0AHIJJGvwEydWUu"
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae30edbd170>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ae30ee9bd20>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 10000,
45
+ "_total_timesteps": 10000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1680813744060435000,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzCInaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMAWTDD1kFKs/MnW/v/mTvb9O1r0/TPuuP4VNgL/3voa+Qxm0P9IRDb9PUgA/9xknP5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2CInaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2UdJRidS4=",
59
+ "achieved_goal": "[[ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]]",
60
+ "desired_goal": "[[ 0.0343199 1.3365598 -1.495764 ]\n [-1.4810783 1.4831026 1.367044 ]\n [-1.0023657 -0.2631757 1.4070209 ]\n [-0.55105317 0.5012559 0.65273994]]",
61
+ "observation": "[[ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMH3hmTxGOt49WMJZPlG9WLxpkOm9shJuPuRNwz21dX29sW95PvYA1jttChi+GiSUPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.01878428 0.10850959 0.21265543]\n [-0.01322873 -0.11404497 0.23249319]\n [ 0.09536341 -0.06187983 0.24359013]\n [ 0.00653088 -0.14847727 0.28933793]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/tZOlITkJ8CUhpRSlIwBbJRLMowBdJRHQC8OqkuYhMd1fZQoaAZoCWgPQwi31EFeDx4lwJSGlFKUaBVLMmgWR0Aus2itaIN3dX2UKGgGaAloD0MIVB7dCIu6JMCUhpRSlGgVSzJoFkdALlk8aGYa53V9lChoBmgJaA9DCCKOdXEbhTLAlIaUUpRoFUsyaBZHQC3+gJ1JUYN1fZQoaAZoCWgPQwjll8EYkbAjwJSGlFKUaBVLMmgWR0AwGcvduYQbdX2UKGgGaAloD0MI5Gn5gavUJMCUhpRSlGgVSzJoFkdAL9iG34Kx93V9lChoBmgJaA9DCNuIJ7uZOSvAlIaUUpRoFUsyaBZHQC99Drqt5lh1fZQoaAZoCWgPQwijIeNRKvkgwJSGlFKUaBVLMmgWR0AvIwRoRIz4dX2UKGgGaAloD0MItr3dkhwAHMCUhpRSlGgVSzJoFkdAMLG87IT4+XV9lChoBmgJaA9DCPhQoiWPdybAlIaUUpRoFUsyaBZHQDCEo/iYLLJ1fZQoaAZoCWgPQwgGKuPfZ5QgwJSGlFKUaBVLMmgWR0AwV3PiT+vRdX2UKGgGaAloD0MIweRGkbV2KcCUhpRSlGgVSzJoFkdAMCodIXj2jHV9lChoBmgJaA9DCDl/EwoRWCLAlIaUUpRoFUsyaBZHQDFEzEaVD8d1fZQoaAZoCWgPQwgTC3xFt74mwJSGlFKUaBVLMmgWR0AxFzWf9P1tdX2UKGgGaAloD0MI8SkAxjNYJcCUhpRSlGgVSzJoFkdAMOmQwK0D2nV9lChoBmgJaA9DCNTX8zXLlR7AlIaUUpRoFUsyaBZHQDC8t16mfoR1fZQoaAZoCWgPQwjrAIi7eoUcwJSGlFKUaBVLMmgWR0Ax2oDgZTAGdX2UKGgGaAloD0MIDYtR19oTIsCUhpRSlGgVSzJoFkdAMa1ar3j+73V9lChoBmgJaA9DCACpTZzc5yPAlIaUUpRoFUsyaBZHQDGACT2WY4R1fZQoaAZoCWgPQwjw2xDjNd8dwJSGlFKUaBVLMmgWR0AxUq+Jxeb/dX2UKGgGaAloD0MIQdgpVg1aKsCUhpRSlGgVSzJoFkdAMmYmw7kn1HV9lChoBmgJaA9DCPkRv2INFyjAlIaUUpRoFUsyaBZHQDI4jxCpm291fZQoaAZoCWgPQwgTJ/c7FP0mwJSGlFKUaBVLMmgWR0AyCtmL9/BndX2UKGgGaAloD0MI6KIh41H6JMCUhpRSlGgVSzJoFkdAMd2criEQG3V9lChoBmgJaA9DCF5LyAc9cyDAlIaUUpRoFUsyaBZHQDMGw8nuy/t1fZQoaAZoCWgPQwi6opQQrAomwJSGlFKUaBVLMmgWR0Ay2U0elsP8dX2UKGgGaAloD0MIPlsHB3s7IsCUhpRSlGgVSzJoFkdAMqvIKc/dI3V9lChoBmgJaA9DCGluhbAaOyPAlIaUUpRoFUsyaBZHQDJ+nXNC7bt1fZQoaAZoCWgPQwgcX3tmSbgowJSGlFKUaBVLMmgWR0Azm3Td+G47dX2UKGgGaAloD0MI+itkrgzSKsCUhpRSlGgVSzJoFkdAM23XumaYu3V9lChoBmgJaA9DCKCM8WH2iiHAlIaUUpRoFUsyaBZHQDNANpdrwfB1fZQoaAZoCWgPQwjq6/ma5WolwJSGlFKUaBVLMmgWR0AzEwQUYbbUdX2UKGgGaAloD0MIZLDiVGstNMCUhpRSlGgVSzJoFkdANCapkwvg33V9lChoBmgJaA9DCIvG2t/ZzhzAlIaUUpRoFUsyaBZHQDP5E7W/ag51fZQoaAZoCWgPQwhIFjCBWy8gwJSGlFKUaBVLMmgWR0Azy1qnFYMfdX2UKGgGaAloD0MIfIFZoUh7NcCUhpRSlGgVSzJoFkdAM54BNmDlHXV9lChoBmgJaA9DCNaoh2h0jynAlIaUUpRoFUsyaBZHQDSxf6XSjQB1fZQoaAZoCWgPQwio4sYt5r8gwJSGlFKUaBVLMmgWR0A0g+Eh7mdRdX2UKGgGaAloD0MIQgqeQq7kIsCUhpRSlGgVSzJoFkdANFYn0Cih4HV9lChoBmgJaA9DCDVgkPRpJSHAlIaUUpRoFUsyaBZHQDQo1EVnEl51fZQoaAZoCWgPQwhf8GlOXsQlwJSGlFKUaBVLMmgWR0A1Pi1iONo8dX2UKGgGaAloD0MIBTI7i95hMMCUhpRSlGgVSzJoFkdANRCQDFId2nV9lChoBmgJaA9DCDV9dsB1yTLAlIaUUpRoFUsyaBZHQDTi1E3Kji51fZQoaAZoCWgPQwiLpx5pcEMmwJSGlFKUaBVLMmgWR0A0tfJ3gUDddX2UKGgGaAloD0MI+BbWjXcfJsCUhpRSlGgVSzJoFkdANdF7D2rXDnV9lChoBmgJaA9DCL5MFCF1uyzAlIaUUpRoFUsyaBZHQDWj779AHFB1fZQoaAZoCWgPQwhYc4Bgju4ZwJSGlFKUaBVLMmgWR0A1dlaKUFB6dX2UKGgGaAloD0MIXi7iOzG7K8CUhpRSlGgVSzJoFkdANUkCA+Y+jnV9lChoBmgJaA9DCFnEsMOYjCjAlIaUUpRoFUsyaBZHQDZhFH8TBZZ1fZQoaAZoCWgPQwjWxtgJL5EjwJSGlFKUaBVLMmgWR0A2M6v7m+0xdX2UKGgGaAloD0MIaHVyhuJeIcCUhpRSlGgVSzJoFkdANgYUSIxgzHV9lChoBmgJaA9DCCKphZLJKTLAlIaUUpRoFUsyaBZHQDXY371qWTp1fZQoaAZoCWgPQwg02qokslckwJSGlFKUaBVLMmgWR0A27ECvHLiddX2UKGgGaAloD0MI8Ief/x5IMMCUhpRSlGgVSzJoFkdANr6eK8+Ro3V9lChoBmgJaA9DCJXx7zMuQDnAlIaUUpRoFUsyaBZHQDaQ7IT4+KV1fZQoaAZoCWgPQwi/KaxUUHUxwJSGlFKUaBVLMmgWR0A2Y5HVf/m1dX2UKGgGaAloD0MIE2VvKeejI8CUhpRSlGgVSzJoFkdAN3jv/io86nV9lChoBmgJaA9DCDp4JjRJxCfAlIaUUpRoFUsyaBZHQDdLdvbXYlJ1fZQoaAZoCWgPQwicNA2K5t03wJSGlFKUaBVLMmgWR0A3HeEqUeMidX2UKGgGaAloD0MIi90+q8wkJ8CUhpRSlGgVSzJoFkdANvCwnpjc23V9lChoBmgJaA9DCPQ2NjtSrR7AlIaUUpRoFUsyaBZHQDgH4DcM3Id1fZQoaAZoCWgPQwjtEWqGVCkjwJSGlFKUaBVLMmgWR0A32m9QGfPHdX2UKGgGaAloD0MIJSL8i6AxJcCUhpRSlGgVSzJoFkdAN6zJp35eq3V9lChoBmgJaA9DCHMtWoC2qTXAlIaUUpRoFUsyaBZHQDd/iLl3hXN1fZQoaAZoCWgPQwgvhQfNrvMhwJSGlFKUaBVLMmgWR0A4lqNp/PPcdX2UKGgGaAloD0MIo5Ol1vsVLcCUhpRSlGgVSzJoFkdAOGksFt8/lnV9lChoBmgJaA9DCJVm8zgMBiTAlIaUUpRoFUsyaBZHQDg7iLl3hXN1fZQoaAZoCWgPQwgPnDOitC8wwJSGlFKUaBVLMmgWR0A4DkAPuogndX2UKGgGaAloD0MIhel7DcEZJcCUhpRSlGgVSzJoFkdAOSsNYr8R+XV9lChoBmgJaA9DCBOAf0qVrDHAlIaUUpRoFUsyaBZHQDj9httQ9A51fZQoaAZoCWgPQwj1SlmGOK4mwJSGlFKUaBVLMmgWR0A4z+FlCkXUdX2UKGgGaAloD0MIW+1hLxRwG8CUhpRSlGgVSzJoFkdAOKKOT7l7t3V9lChoBmgJaA9DCFA0D2CRLzXAlIaUUpRoFUsyaBZHQDm/3Fkxyn11fZQoaAZoCWgPQwj3yrxV1+kowJSGlFKUaBVLMmgWR0A5kj7ALy+YdX2UKGgGaAloD0MIM25qoPmUL8CUhpRSlGgVSzJoFkdAOWSKNyYG+3V9lChoBmgJaA9DCLwkzoqoaSfAlIaUUpRoFUsyaBZHQDk3TfBN21V1fZQoaAZoCWgPQwiM9nghHbYkwJSGlFKUaBVLMmgWR0A6SIbwSamXdX2UKGgGaAloD0MI3J212y4UJcCUhpRSlGgVSzJoFkdAOhr70nPVu3V9lChoBmgJaA9DCA9iZwqdbyPAlIaUUpRoFUsyaBZHQDntcW0qpcZ1fZQoaAZoCWgPQwj7Bbth2wItwJSGlFKUaBVLMmgWR0A5wE8JUo8ZdX2UKGgGaAloD0MIq7AZ4IJYMMCUhpRSlGgVSzJoFkdAOtKPfbblBHV9lChoBmgJaA9DCEHYKVYNMh7AlIaUUpRoFUsyaBZHQDqlKoQ4CIV1fZQoaAZoCWgPQwjaO6OtSqIdwJSGlFKUaBVLMmgWR0A6d5vLowEhdX2UKGgGaAloD0MIISHKF7TQGMCUhpRSlGgVSzJoFkdAOkp3os7MgXV9lChoBmgJaA9DCGVVhJuM2iXAlIaUUpRoFUsyaBZHQDtnRc/t6X11fZQoaAZoCWgPQwh0mgXaHaIfwJSGlFKUaBVLMmgWR0A7OcophF3IdX2UKGgGaAloD0MIhgDg2LNXGcCUhpRSlGgVSzJoFkdAOwyEQGwA2nV9lChoBmgJaA9DCINMMnIWni3AlIaUUpRoFUsyaBZHQDrfK6nR9gF1fZQoaAZoCWgPQwg5tTNMbT0ywJSGlFKUaBVLMmgWR0A7+WmP5pJxdX2UKGgGaAloD0MI8MLWbOVVKMCUhpRSlGgVSzJoFkdAO8vek56t1nV9lChoBmgJaA9DCAcnol9bDx/AlIaUUpRoFUsyaBZHQDueLYPGyX51fZQoaAZoCWgPQwjI0RxZ+fUqwJSGlFKUaBVLMmgWR0A7cPgNwzcidX2UKGgGaAloD0MIuI/cmnQ3McCUhpRSlGgVSzJoFkdAPIdA9mpVCHV9lChoBmgJaA9DCGN/2T15GBzAlIaUUpRoFUsyaBZHQDxaH58BuGd1fZQoaAZoCWgPQwi4V+atum4uwJSGlFKUaBVLMmgWR0A8LIV/MGHIdX2UKGgGaAloD0MI/Yf029dhL8CUhpRSlGgVSzJoFkdAO/8lLOAy23V9lChoBmgJaA9DCMQI4dHGsSDAlIaUUpRoFUsyaBZHQD0PHktEofF1fZQoaAZoCWgPQwjsaBzqdykgwJSGlFKUaBVLMmgWR0A84bR4QjD9dX2UKGgGaAloD0MI4Eigwaa2JcCUhpRSlGgVSzJoFkdAPLP/m1YyPHV9lChoBmgJaA9DCJaYZyWtSCLAlIaUUpRoFUsyaBZHQDyGwB5ooNN1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 500,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a9792d1d2b7517e858ab589b134e43da1c073ba51afdbd718235c61901c82ab2
3
  size 44606
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a55ff514820b9d7a56d175e798a36fa0c02653fbc9f0de9c523e29e6efd0022c
3
  size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc96dfc549df35278c75a32ed020969762bae5c18edda0e5ccd8982800277117
3
  size 45886
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be12c50a9a0a17fe0fd0005d408ce8b968b933b4b1dee23995264e76f287562
3
  size 45886
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79ea20fede60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x79ea20fccf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680812870737837029, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDBpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMBPXhT9hbZ6/sz4NP7ArJT/A4XW/p2RmP7+EfD/QeNU/Uw4aP93Xar906Ww/x4/Nv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DBpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj2UdJRidS4=", "achieved_goal": "[[0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]]", "desired_goal": "[[ 1.045626 -1.237713 0.55173796]\n [ 0.64519787 -0.9604759 0.89997333]\n [ 0.98640054 1.6677494 0.6017811 ]\n [-0.9173563 0.9254372 -1.6059502 ]]", "observation": "[[0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMJcGNL3GePW9y539Pe18nb2BtUo9bxX+PciTAz4zHak9hGdlPreXdLosZd+9SAWMPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0439516 -0.11985926 0.12383612]\n [-0.07689843 0.0494895 0.12406432]\n [ 0.12849343 0.08257522 0.2240277 ]\n [-0.00093305 -0.10907969 0.2734778 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxv1HpkPvIMCUhpRSlIwBbJRLMowBdJRHP/IkpZwGW2R1fZQoaAZoCWgPQwh7L75oj58lwJSGlFKUaBVLMmgWRz/uy0rsjVx0dX2UKGgGaAloD0MI3bOu0XJYJsCUhpRSlGgVSzJoFkc/6V+1Bt1p03V9lChoBmgJaA9DCF2MgXUc5yrAlIaUUpRoFUsyaBZHP+PpFkQPI4l1fZQoaAZoCWgPQwg5Drxa7iAzwJSGlFKUaBVLMmgWRz/7OQMhHLA6dX2UKGgGaAloD0MIXaeRlsr7J8CUhpRSlGgVSzJoFkc/+Hi1iONo8XV9lChoBmgJaA9DCCP3dHXHOjDAlIaUUpRoFUsyaBZHP/XL/jsD4g11fZQoaAZoCWgPQwjzBS0kYFQuwJSGlFKUaBVLMmgWRz/zD6vaDf3wdX2UKGgGaAloD0MIN6lorP0tMcCUhpRSlGgVSzJoFkdAAkFMZgogFHV9lChoBmgJaA9DCMZq8/+qSy/AlIaUUpRoFUsyaBZHQADh9LHuJDV1fZQoaAZoCWgPQwjisZ/FUnQfwJSGlFKUaBVLMmgWRz//E2xY7q6fdX2UKGgGaAloD0MIrUz4pX6eG8CUhpRSlGgVSzJoFkc//FV/+bVjJHV9lChoBmgJaA9DCHgmNEksfTHAlIaUUpRoFUsyaBZHQAarfDUExIt1fZQoaAZoCWgPQwhrRDAOLsUgwJSGlFKUaBVLMmgWR0AFTUoa1kUcdX2UKGgGaAloD0MIB5s6j4ovK8CUhpRSlGgVSzJoFkdAA/ZntfG+9XV9lChoBmgJaA9DCEFGQIUjYCfAlIaUUpRoFUsyaBZHQAKakIomXw91fZQoaAZoCWgPQwiCixU1mMYZwJSGlFKUaBVLMmgWR0ALOCuloDgZdX2UKGgGaAloD0MIYw6CjlaFGMCUhpRSlGgVSzJoFkdACdiWE9Mbm3V9lChoBmgJaA9DCMEffv57kDDAlIaUUpRoFUsyaBZHQAh/foA4n4R1fZQoaAZoCWgPQwjKwWwCDL8wwJSGlFKUaBVLMmgWR0AHIJJGvwEydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae30edbd170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ae30ee9bd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680813744060435000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzCInaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMAWTDD1kFKs/MnW/v/mTvb9O1r0/TPuuP4VNgL/3voa+Qxm0P9IRDb9PUgA/9xknP5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2CInaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2UdJRidS4=", "achieved_goal": "[[ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]]", "desired_goal": "[[ 0.0343199 1.3365598 -1.495764 ]\n [-1.4810783 1.4831026 1.367044 ]\n [-1.0023657 -0.2631757 1.4070209 ]\n [-0.55105317 0.5012559 0.65273994]]", "observation": "[[ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMH3hmTxGOt49WMJZPlG9WLxpkOm9shJuPuRNwz21dX29sW95PvYA1jttChi+GiSUPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01878428 0.10850959 0.21265543]\n [-0.01322873 -0.11404497 0.23249319]\n [ 0.09536341 -0.06187983 0.24359013]\n [ 0.00653088 -0.14847727 0.28933793]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/tZOlITkJ8CUhpRSlIwBbJRLMowBdJRHQC8OqkuYhMd1fZQoaAZoCWgPQwi31EFeDx4lwJSGlFKUaBVLMmgWR0Aus2itaIN3dX2UKGgGaAloD0MIVB7dCIu6JMCUhpRSlGgVSzJoFkdALlk8aGYa53V9lChoBmgJaA9DCCKOdXEbhTLAlIaUUpRoFUsyaBZHQC3+gJ1JUYN1fZQoaAZoCWgPQwjll8EYkbAjwJSGlFKUaBVLMmgWR0AwGcvduYQbdX2UKGgGaAloD0MI5Gn5gavUJMCUhpRSlGgVSzJoFkdAL9iG34Kx93V9lChoBmgJaA9DCNuIJ7uZOSvAlIaUUpRoFUsyaBZHQC99Drqt5lh1fZQoaAZoCWgPQwijIeNRKvkgwJSGlFKUaBVLMmgWR0AvIwRoRIz4dX2UKGgGaAloD0MItr3dkhwAHMCUhpRSlGgVSzJoFkdAMLG87IT4+XV9lChoBmgJaA9DCPhQoiWPdybAlIaUUpRoFUsyaBZHQDCEo/iYLLJ1fZQoaAZoCWgPQwgGKuPfZ5QgwJSGlFKUaBVLMmgWR0AwV3PiT+vRdX2UKGgGaAloD0MIweRGkbV2KcCUhpRSlGgVSzJoFkdAMCodIXj2jHV9lChoBmgJaA9DCDl/EwoRWCLAlIaUUpRoFUsyaBZHQDFEzEaVD8d1fZQoaAZoCWgPQwgTC3xFt74mwJSGlFKUaBVLMmgWR0AxFzWf9P1tdX2UKGgGaAloD0MI8SkAxjNYJcCUhpRSlGgVSzJoFkdAMOmQwK0D2nV9lChoBmgJaA9DCNTX8zXLlR7AlIaUUpRoFUsyaBZHQDC8t16mfoR1fZQoaAZoCWgPQwjrAIi7eoUcwJSGlFKUaBVLMmgWR0Ax2oDgZTAGdX2UKGgGaAloD0MIDYtR19oTIsCUhpRSlGgVSzJoFkdAMa1ar3j+73V9lChoBmgJaA9DCACpTZzc5yPAlIaUUpRoFUsyaBZHQDGACT2WY4R1fZQoaAZoCWgPQwjw2xDjNd8dwJSGlFKUaBVLMmgWR0AxUq+Jxeb/dX2UKGgGaAloD0MIQdgpVg1aKsCUhpRSlGgVSzJoFkdAMmYmw7kn1HV9lChoBmgJaA9DCPkRv2INFyjAlIaUUpRoFUsyaBZHQDI4jxCpm291fZQoaAZoCWgPQwgTJ/c7FP0mwJSGlFKUaBVLMmgWR0AyCtmL9/BndX2UKGgGaAloD0MI6KIh41H6JMCUhpRSlGgVSzJoFkdAMd2criEQG3V9lChoBmgJaA9DCF5LyAc9cyDAlIaUUpRoFUsyaBZHQDMGw8nuy/t1fZQoaAZoCWgPQwi6opQQrAomwJSGlFKUaBVLMmgWR0Ay2U0elsP8dX2UKGgGaAloD0MIPlsHB3s7IsCUhpRSlGgVSzJoFkdAMqvIKc/dI3V9lChoBmgJaA9DCGluhbAaOyPAlIaUUpRoFUsyaBZHQDJ+nXNC7bt1fZQoaAZoCWgPQwgcX3tmSbgowJSGlFKUaBVLMmgWR0Azm3Td+G47dX2UKGgGaAloD0MI+itkrgzSKsCUhpRSlGgVSzJoFkdAM23XumaYu3V9lChoBmgJaA9DCKCM8WH2iiHAlIaUUpRoFUsyaBZHQDNANpdrwfB1fZQoaAZoCWgPQwjq6/ma5WolwJSGlFKUaBVLMmgWR0AzEwQUYbbUdX2UKGgGaAloD0MIZLDiVGstNMCUhpRSlGgVSzJoFkdANCapkwvg33V9lChoBmgJaA9DCIvG2t/ZzhzAlIaUUpRoFUsyaBZHQDP5E7W/ag51fZQoaAZoCWgPQwhIFjCBWy8gwJSGlFKUaBVLMmgWR0Azy1qnFYMfdX2UKGgGaAloD0MIfIFZoUh7NcCUhpRSlGgVSzJoFkdAM54BNmDlHXV9lChoBmgJaA9DCNaoh2h0jynAlIaUUpRoFUsyaBZHQDSxf6XSjQB1fZQoaAZoCWgPQwio4sYt5r8gwJSGlFKUaBVLMmgWR0A0g+Eh7mdRdX2UKGgGaAloD0MIQgqeQq7kIsCUhpRSlGgVSzJoFkdANFYn0Cih4HV9lChoBmgJaA9DCDVgkPRpJSHAlIaUUpRoFUsyaBZHQDQo1EVnEl51fZQoaAZoCWgPQwhf8GlOXsQlwJSGlFKUaBVLMmgWR0A1Pi1iONo8dX2UKGgGaAloD0MIBTI7i95hMMCUhpRSlGgVSzJoFkdANRCQDFId2nV9lChoBmgJaA9DCDV9dsB1yTLAlIaUUpRoFUsyaBZHQDTi1E3Kji51fZQoaAZoCWgPQwiLpx5pcEMmwJSGlFKUaBVLMmgWR0A0tfJ3gUDddX2UKGgGaAloD0MI+BbWjXcfJsCUhpRSlGgVSzJoFkdANdF7D2rXDnV9lChoBmgJaA9DCL5MFCF1uyzAlIaUUpRoFUsyaBZHQDWj779AHFB1fZQoaAZoCWgPQwhYc4Bgju4ZwJSGlFKUaBVLMmgWR0A1dlaKUFB6dX2UKGgGaAloD0MIXi7iOzG7K8CUhpRSlGgVSzJoFkdANUkCA+Y+jnV9lChoBmgJaA9DCFnEsMOYjCjAlIaUUpRoFUsyaBZHQDZhFH8TBZZ1fZQoaAZoCWgPQwjWxtgJL5EjwJSGlFKUaBVLMmgWR0A2M6v7m+0xdX2UKGgGaAloD0MIaHVyhuJeIcCUhpRSlGgVSzJoFkdANgYUSIxgzHV9lChoBmgJaA9DCCKphZLJKTLAlIaUUpRoFUsyaBZHQDXY371qWTp1fZQoaAZoCWgPQwg02qokslckwJSGlFKUaBVLMmgWR0A27ECvHLiddX2UKGgGaAloD0MI8Ief/x5IMMCUhpRSlGgVSzJoFkdANr6eK8+Ro3V9lChoBmgJaA9DCJXx7zMuQDnAlIaUUpRoFUsyaBZHQDaQ7IT4+KV1fZQoaAZoCWgPQwi/KaxUUHUxwJSGlFKUaBVLMmgWR0A2Y5HVf/m1dX2UKGgGaAloD0MIE2VvKeejI8CUhpRSlGgVSzJoFkdAN3jv/io86nV9lChoBmgJaA9DCDp4JjRJxCfAlIaUUpRoFUsyaBZHQDdLdvbXYlJ1fZQoaAZoCWgPQwicNA2K5t03wJSGlFKUaBVLMmgWR0A3HeEqUeMidX2UKGgGaAloD0MIi90+q8wkJ8CUhpRSlGgVSzJoFkdANvCwnpjc23V9lChoBmgJaA9DCPQ2NjtSrR7AlIaUUpRoFUsyaBZHQDgH4DcM3Id1fZQoaAZoCWgPQwjtEWqGVCkjwJSGlFKUaBVLMmgWR0A32m9QGfPHdX2UKGgGaAloD0MIJSL8i6AxJcCUhpRSlGgVSzJoFkdAN6zJp35eq3V9lChoBmgJaA9DCHMtWoC2qTXAlIaUUpRoFUsyaBZHQDd/iLl3hXN1fZQoaAZoCWgPQwgvhQfNrvMhwJSGlFKUaBVLMmgWR0A4lqNp/PPcdX2UKGgGaAloD0MIo5Ol1vsVLcCUhpRSlGgVSzJoFkdAOGksFt8/lnV9lChoBmgJaA9DCJVm8zgMBiTAlIaUUpRoFUsyaBZHQDg7iLl3hXN1fZQoaAZoCWgPQwgPnDOitC8wwJSGlFKUaBVLMmgWR0A4DkAPuogndX2UKGgGaAloD0MIhel7DcEZJcCUhpRSlGgVSzJoFkdAOSsNYr8R+XV9lChoBmgJaA9DCBOAf0qVrDHAlIaUUpRoFUsyaBZHQDj9httQ9A51fZQoaAZoCWgPQwj1SlmGOK4mwJSGlFKUaBVLMmgWR0A4z+FlCkXUdX2UKGgGaAloD0MIW+1hLxRwG8CUhpRSlGgVSzJoFkdAOKKOT7l7t3V9lChoBmgJaA9DCFA0D2CRLzXAlIaUUpRoFUsyaBZHQDm/3Fkxyn11fZQoaAZoCWgPQwj3yrxV1+kowJSGlFKUaBVLMmgWR0A5kj7ALy+YdX2UKGgGaAloD0MIM25qoPmUL8CUhpRSlGgVSzJoFkdAOWSKNyYG+3V9lChoBmgJaA9DCLwkzoqoaSfAlIaUUpRoFUsyaBZHQDk3TfBN21V1fZQoaAZoCWgPQwiM9nghHbYkwJSGlFKUaBVLMmgWR0A6SIbwSamXdX2UKGgGaAloD0MI3J212y4UJcCUhpRSlGgVSzJoFkdAOhr70nPVu3V9lChoBmgJaA9DCA9iZwqdbyPAlIaUUpRoFUsyaBZHQDntcW0qpcZ1fZQoaAZoCWgPQwj7Bbth2wItwJSGlFKUaBVLMmgWR0A5wE8JUo8ZdX2UKGgGaAloD0MIq7AZ4IJYMMCUhpRSlGgVSzJoFkdAOtKPfbblBHV9lChoBmgJaA9DCEHYKVYNMh7AlIaUUpRoFUsyaBZHQDqlKoQ4CIV1fZQoaAZoCWgPQwjaO6OtSqIdwJSGlFKUaBVLMmgWR0A6d5vLowEhdX2UKGgGaAloD0MIISHKF7TQGMCUhpRSlGgVSzJoFkdAOkp3os7MgXV9lChoBmgJaA9DCGVVhJuM2iXAlIaUUpRoFUsyaBZHQDtnRc/t6X11fZQoaAZoCWgPQwh0mgXaHaIfwJSGlFKUaBVLMmgWR0A7OcophF3IdX2UKGgGaAloD0MIhgDg2LNXGcCUhpRSlGgVSzJoFkdAOwyEQGwA2nV9lChoBmgJaA9DCINMMnIWni3AlIaUUpRoFUsyaBZHQDrfK6nR9gF1fZQoaAZoCWgPQwg5tTNMbT0ywJSGlFKUaBVLMmgWR0A7+WmP5pJxdX2UKGgGaAloD0MI8MLWbOVVKMCUhpRSlGgVSzJoFkdAO8vek56t1nV9lChoBmgJaA9DCAcnol9bDx/AlIaUUpRoFUsyaBZHQDueLYPGyX51fZQoaAZoCWgPQwjI0RxZ+fUqwJSGlFKUaBVLMmgWR0A7cPgNwzcidX2UKGgGaAloD0MIuI/cmnQ3McCUhpRSlGgVSzJoFkdAPIdA9mpVCHV9lChoBmgJaA9DCGN/2T15GBzAlIaUUpRoFUsyaBZHQDxaH58BuGd1fZQoaAZoCWgPQwi4V+atum4uwJSGlFKUaBVLMmgWR0A8LIV/MGHIdX2UKGgGaAloD0MI/Yf029dhL8CUhpRSlGgVSzJoFkdAO/8lLOAy23V9lChoBmgJaA9DCMQI4dHGsSDAlIaUUpRoFUsyaBZHQD0PHktEofF1fZQoaAZoCWgPQwjsaBzqdykgwJSGlFKUaBVLMmgWR0A84bR4QjD9dX2UKGgGaAloD0MI4Eigwaa2JcCUhpRSlGgVSzJoFkdAPLP/m1YyPHV9lChoBmgJaA9DCJaYZyWtSCLAlIaUUpRoFUsyaBZHQDyGwB5ooNN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -11.169907528348267, "std_reward": 3.253848068539077, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T20:27:58.314301"}
 
1
+ {"mean_reward": -18.8073762729764, "std_reward": 3.6472662395638356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T20:42:56.466434"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d21b25afe84259fb44442f0dac294f6837f0ff2c0163c84b33addb3143c855a
3
  size 3731
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f40d581af818a25f25f3f4d442dd42d769a242647c6be080abcfc3bcac1f679b
3
  size 3731