commit a2c-PandaReachDense-v2
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -18.81 +/- 3.65
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98f98a567e172c79310d0c8ab48fe861dabd0844fe1427ece72434d055268af4
|
3 |
+
size 108025
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[ 1.
|
61 |
-
"observation": "[[0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae30edbd170>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7ae30ee9bd20>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 10000,
|
45 |
+
"_total_timesteps": 10000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1680813744060435000,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzCInaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMAWTDD1kFKs/MnW/v/mTvb9O1r0/TPuuP4VNgL/3voa+Qxm0P9IRDb9PUgA/9xknP5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2CInaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2UdJRidS4=",
|
59 |
+
"achieved_goal": "[[ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]]",
|
60 |
+
"desired_goal": "[[ 0.0343199 1.3365598 -1.495764 ]\n [-1.4810783 1.4831026 1.367044 ]\n [-1.0023657 -0.2631757 1.4070209 ]\n [-0.55105317 0.5012559 0.65273994]]",
|
61 |
+
"observation": "[[ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMH3hmTxGOt49WMJZPlG9WLxpkOm9shJuPuRNwz21dX29sW95PvYA1jttChi+GiSUPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.01878428 0.10850959 0.21265543]\n [-0.01322873 -0.11404497 0.23249319]\n [ 0.09536341 -0.06187983 0.24359013]\n [ 0.00653088 -0.14847727 0.28933793]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/tZOlITkJ8CUhpRSlIwBbJRLMowBdJRHQC8OqkuYhMd1fZQoaAZoCWgPQwi31EFeDx4lwJSGlFKUaBVLMmgWR0Aus2itaIN3dX2UKGgGaAloD0MIVB7dCIu6JMCUhpRSlGgVSzJoFkdALlk8aGYa53V9lChoBmgJaA9DCCKOdXEbhTLAlIaUUpRoFUsyaBZHQC3+gJ1JUYN1fZQoaAZoCWgPQwjll8EYkbAjwJSGlFKUaBVLMmgWR0AwGcvduYQbdX2UKGgGaAloD0MI5Gn5gavUJMCUhpRSlGgVSzJoFkdAL9iG34Kx93V9lChoBmgJaA9DCNuIJ7uZOSvAlIaUUpRoFUsyaBZHQC99Drqt5lh1fZQoaAZoCWgPQwijIeNRKvkgwJSGlFKUaBVLMmgWR0AvIwRoRIz4dX2UKGgGaAloD0MItr3dkhwAHMCUhpRSlGgVSzJoFkdAMLG87IT4+XV9lChoBmgJaA9DCPhQoiWPdybAlIaUUpRoFUsyaBZHQDCEo/iYLLJ1fZQoaAZoCWgPQwgGKuPfZ5QgwJSGlFKUaBVLMmgWR0AwV3PiT+vRdX2UKGgGaAloD0MIweRGkbV2KcCUhpRSlGgVSzJoFkdAMCodIXj2jHV9lChoBmgJaA9DCDl/EwoRWCLAlIaUUpRoFUsyaBZHQDFEzEaVD8d1fZQoaAZoCWgPQwgTC3xFt74mwJSGlFKUaBVLMmgWR0AxFzWf9P1tdX2UKGgGaAloD0MI8SkAxjNYJcCUhpRSlGgVSzJoFkdAMOmQwK0D2nV9lChoBmgJaA9DCNTX8zXLlR7AlIaUUpRoFUsyaBZHQDC8t16mfoR1fZQoaAZoCWgPQwjrAIi7eoUcwJSGlFKUaBVLMmgWR0Ax2oDgZTAGdX2UKGgGaAloD0MIDYtR19oTIsCUhpRSlGgVSzJoFkdAMa1ar3j+73V9lChoBmgJaA9DCACpTZzc5yPAlIaUUpRoFUsyaBZHQDGACT2WY4R1fZQoaAZoCWgPQwjw2xDjNd8dwJSGlFKUaBVLMmgWR0AxUq+Jxeb/dX2UKGgGaAloD0MIQdgpVg1aKsCUhpRSlGgVSzJoFkdAMmYmw7kn1HV9lChoBmgJaA9DCPkRv2INFyjAlIaUUpRoFUsyaBZHQDI4jxCpm291fZQoaAZoCWgPQwgTJ/c7FP0mwJSGlFKUaBVLMmgWR0AyCtmL9/BndX2UKGgGaAloD0MI6KIh41H6JMCUhpRSlGgVSzJoFkdAMd2criEQG3V9lChoBmgJaA9DCF5LyAc9cyDAlIaUUpRoFUsyaBZHQDMGw8nuy/t1fZQoaAZoCWgPQwi6opQQrAomwJSGlFKUaBVLMmgWR0Ay2U0elsP8dX2UKGgGaAloD0MIPlsHB3s7IsCUhpRSlGgVSzJoFkdAMqvIKc/dI3V9lChoBmgJaA9DCGluhbAaOyPAlIaUUpRoFUsyaBZHQDJ+nXNC7bt1fZQoaAZoCWgPQwgcX3tmSbgowJSGlFKUaBVLMmgWR0Azm3Td+G47dX2UKGgGaAloD0MI+itkrgzSKsCUhpRSlGgVSzJoFkdAM23XumaYu3V9lChoBmgJaA9DCKCM8WH2iiHAlIaUUpRoFUsyaBZHQDNANpdrwfB1fZQoaAZoCWgPQwjq6/ma5WolwJSGlFKUaBVLMmgWR0AzEwQUYbbUdX2UKGgGaAloD0MIZLDiVGstNMCUhpRSlGgVSzJoFkdANCapkwvg33V9lChoBmgJaA9DCIvG2t/ZzhzAlIaUUpRoFUsyaBZHQDP5E7W/ag51fZQoaAZoCWgPQwhIFjCBWy8gwJSGlFKUaBVLMmgWR0Azy1qnFYMfdX2UKGgGaAloD0MIfIFZoUh7NcCUhpRSlGgVSzJoFkdAM54BNmDlHXV9lChoBmgJaA9DCNaoh2h0jynAlIaUUpRoFUsyaBZHQDSxf6XSjQB1fZQoaAZoCWgPQwio4sYt5r8gwJSGlFKUaBVLMmgWR0A0g+Eh7mdRdX2UKGgGaAloD0MIQgqeQq7kIsCUhpRSlGgVSzJoFkdANFYn0Cih4HV9lChoBmgJaA9DCDVgkPRpJSHAlIaUUpRoFUsyaBZHQDQo1EVnEl51fZQoaAZoCWgPQwhf8GlOXsQlwJSGlFKUaBVLMmgWR0A1Pi1iONo8dX2UKGgGaAloD0MIBTI7i95hMMCUhpRSlGgVSzJoFkdANRCQDFId2nV9lChoBmgJaA9DCDV9dsB1yTLAlIaUUpRoFUsyaBZHQDTi1E3Kji51fZQoaAZoCWgPQwiLpx5pcEMmwJSGlFKUaBVLMmgWR0A0tfJ3gUDddX2UKGgGaAloD0MI+BbWjXcfJsCUhpRSlGgVSzJoFkdANdF7D2rXDnV9lChoBmgJaA9DCL5MFCF1uyzAlIaUUpRoFUsyaBZHQDWj779AHFB1fZQoaAZoCWgPQwhYc4Bgju4ZwJSGlFKUaBVLMmgWR0A1dlaKUFB6dX2UKGgGaAloD0MIXi7iOzG7K8CUhpRSlGgVSzJoFkdANUkCA+Y+jnV9lChoBmgJaA9DCFnEsMOYjCjAlIaUUpRoFUsyaBZHQDZhFH8TBZZ1fZQoaAZoCWgPQwjWxtgJL5EjwJSGlFKUaBVLMmgWR0A2M6v7m+0xdX2UKGgGaAloD0MIaHVyhuJeIcCUhpRSlGgVSzJoFkdANgYUSIxgzHV9lChoBmgJaA9DCCKphZLJKTLAlIaUUpRoFUsyaBZHQDXY371qWTp1fZQoaAZoCWgPQwg02qokslckwJSGlFKUaBVLMmgWR0A27ECvHLiddX2UKGgGaAloD0MI8Ief/x5IMMCUhpRSlGgVSzJoFkdANr6eK8+Ro3V9lChoBmgJaA9DCJXx7zMuQDnAlIaUUpRoFUsyaBZHQDaQ7IT4+KV1fZQoaAZoCWgPQwi/KaxUUHUxwJSGlFKUaBVLMmgWR0A2Y5HVf/m1dX2UKGgGaAloD0MIE2VvKeejI8CUhpRSlGgVSzJoFkdAN3jv/io86nV9lChoBmgJaA9DCDp4JjRJxCfAlIaUUpRoFUsyaBZHQDdLdvbXYlJ1fZQoaAZoCWgPQwicNA2K5t03wJSGlFKUaBVLMmgWR0A3HeEqUeMidX2UKGgGaAloD0MIi90+q8wkJ8CUhpRSlGgVSzJoFkdANvCwnpjc23V9lChoBmgJaA9DCPQ2NjtSrR7AlIaUUpRoFUsyaBZHQDgH4DcM3Id1fZQoaAZoCWgPQwjtEWqGVCkjwJSGlFKUaBVLMmgWR0A32m9QGfPHdX2UKGgGaAloD0MIJSL8i6AxJcCUhpRSlGgVSzJoFkdAN6zJp35eq3V9lChoBmgJaA9DCHMtWoC2qTXAlIaUUpRoFUsyaBZHQDd/iLl3hXN1fZQoaAZoCWgPQwgvhQfNrvMhwJSGlFKUaBVLMmgWR0A4lqNp/PPcdX2UKGgGaAloD0MIo5Ol1vsVLcCUhpRSlGgVSzJoFkdAOGksFt8/lnV9lChoBmgJaA9DCJVm8zgMBiTAlIaUUpRoFUsyaBZHQDg7iLl3hXN1fZQoaAZoCWgPQwgPnDOitC8wwJSGlFKUaBVLMmgWR0A4DkAPuogndX2UKGgGaAloD0MIhel7DcEZJcCUhpRSlGgVSzJoFkdAOSsNYr8R+XV9lChoBmgJaA9DCBOAf0qVrDHAlIaUUpRoFUsyaBZHQDj9httQ9A51fZQoaAZoCWgPQwj1SlmGOK4mwJSGlFKUaBVLMmgWR0A4z+FlCkXUdX2UKGgGaAloD0MIW+1hLxRwG8CUhpRSlGgVSzJoFkdAOKKOT7l7t3V9lChoBmgJaA9DCFA0D2CRLzXAlIaUUpRoFUsyaBZHQDm/3Fkxyn11fZQoaAZoCWgPQwj3yrxV1+kowJSGlFKUaBVLMmgWR0A5kj7ALy+YdX2UKGgGaAloD0MIM25qoPmUL8CUhpRSlGgVSzJoFkdAOWSKNyYG+3V9lChoBmgJaA9DCLwkzoqoaSfAlIaUUpRoFUsyaBZHQDk3TfBN21V1fZQoaAZoCWgPQwiM9nghHbYkwJSGlFKUaBVLMmgWR0A6SIbwSamXdX2UKGgGaAloD0MI3J212y4UJcCUhpRSlGgVSzJoFkdAOhr70nPVu3V9lChoBmgJaA9DCA9iZwqdbyPAlIaUUpRoFUsyaBZHQDntcW0qpcZ1fZQoaAZoCWgPQwj7Bbth2wItwJSGlFKUaBVLMmgWR0A5wE8JUo8ZdX2UKGgGaAloD0MIq7AZ4IJYMMCUhpRSlGgVSzJoFkdAOtKPfbblBHV9lChoBmgJaA9DCEHYKVYNMh7AlIaUUpRoFUsyaBZHQDqlKoQ4CIV1fZQoaAZoCWgPQwjaO6OtSqIdwJSGlFKUaBVLMmgWR0A6d5vLowEhdX2UKGgGaAloD0MIISHKF7TQGMCUhpRSlGgVSzJoFkdAOkp3os7MgXV9lChoBmgJaA9DCGVVhJuM2iXAlIaUUpRoFUsyaBZHQDtnRc/t6X11fZQoaAZoCWgPQwh0mgXaHaIfwJSGlFKUaBVLMmgWR0A7OcophF3IdX2UKGgGaAloD0MIhgDg2LNXGcCUhpRSlGgVSzJoFkdAOwyEQGwA2nV9lChoBmgJaA9DCINMMnIWni3AlIaUUpRoFUsyaBZHQDrfK6nR9gF1fZQoaAZoCWgPQwg5tTNMbT0ywJSGlFKUaBVLMmgWR0A7+WmP5pJxdX2UKGgGaAloD0MI8MLWbOVVKMCUhpRSlGgVSzJoFkdAO8vek56t1nV9lChoBmgJaA9DCAcnol9bDx/AlIaUUpRoFUsyaBZHQDueLYPGyX51fZQoaAZoCWgPQwjI0RxZ+fUqwJSGlFKUaBVLMmgWR0A7cPgNwzcidX2UKGgGaAloD0MIuI/cmnQ3McCUhpRSlGgVSzJoFkdAPIdA9mpVCHV9lChoBmgJaA9DCGN/2T15GBzAlIaUUpRoFUsyaBZHQDxaH58BuGd1fZQoaAZoCWgPQwi4V+atum4uwJSGlFKUaBVLMmgWR0A8LIV/MGHIdX2UKGgGaAloD0MI/Yf029dhL8CUhpRSlGgVSzJoFkdAO/8lLOAy23V9lChoBmgJaA9DCMQI4dHGsSDAlIaUUpRoFUsyaBZHQD0PHktEofF1fZQoaAZoCWgPQwjsaBzqdykgwJSGlFKUaBVLMmgWR0A84bR4QjD9dX2UKGgGaAloD0MI4Eigwaa2JcCUhpRSlGgVSzJoFkdAPLP/m1YyPHV9lChoBmgJaA9DCJaYZyWtSCLAlIaUUpRoFUsyaBZHQDyGwB5ooNN1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 500,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44606
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a55ff514820b9d7a56d175e798a36fa0c02653fbc9f0de9c523e29e6efd0022c
|
3 |
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45886
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5be12c50a9a0a17fe0fd0005d408ce8b968b933b4b1dee23995264e76f287562
|
3 |
size 45886
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79ea20fede60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x79ea20fccf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680812870737837029, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDBpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMBPXhT9hbZ6/sz4NP7ArJT/A4XW/p2RmP7+EfD/QeNU/Uw4aP93Xar906Ww/x4/Nv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DBpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj2UdJRidS4=", "achieved_goal": "[[0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]]", "desired_goal": "[[ 1.045626 -1.237713 0.55173796]\n [ 0.64519787 -0.9604759 0.89997333]\n [ 0.98640054 1.6677494 0.6017811 ]\n [-0.9173563 0.9254372 -1.6059502 ]]", "observation": "[[0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMJcGNL3GePW9y539Pe18nb2BtUo9bxX+PciTAz4zHak9hGdlPreXdLosZd+9SAWMPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0439516 -0.11985926 0.12383612]\n [-0.07689843 0.0494895 0.12406432]\n [ 0.12849343 0.08257522 0.2240277 ]\n [-0.00093305 -0.10907969 0.2734778 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxv1HpkPvIMCUhpRSlIwBbJRLMowBdJRHP/IkpZwGW2R1fZQoaAZoCWgPQwh7L75oj58lwJSGlFKUaBVLMmgWRz/uy0rsjVx0dX2UKGgGaAloD0MI3bOu0XJYJsCUhpRSlGgVSzJoFkc/6V+1Bt1p03V9lChoBmgJaA9DCF2MgXUc5yrAlIaUUpRoFUsyaBZHP+PpFkQPI4l1fZQoaAZoCWgPQwg5Drxa7iAzwJSGlFKUaBVLMmgWRz/7OQMhHLA6dX2UKGgGaAloD0MIXaeRlsr7J8CUhpRSlGgVSzJoFkc/+Hi1iONo8XV9lChoBmgJaA9DCCP3dHXHOjDAlIaUUpRoFUsyaBZHP/XL/jsD4g11fZQoaAZoCWgPQwjzBS0kYFQuwJSGlFKUaBVLMmgWRz/zD6vaDf3wdX2UKGgGaAloD0MIN6lorP0tMcCUhpRSlGgVSzJoFkdAAkFMZgogFHV9lChoBmgJaA9DCMZq8/+qSy/AlIaUUpRoFUsyaBZHQADh9LHuJDV1fZQoaAZoCWgPQwjisZ/FUnQfwJSGlFKUaBVLMmgWRz//E2xY7q6fdX2UKGgGaAloD0MIrUz4pX6eG8CUhpRSlGgVSzJoFkc//FV/+bVjJHV9lChoBmgJaA9DCHgmNEksfTHAlIaUUpRoFUsyaBZHQAarfDUExIt1fZQoaAZoCWgPQwhrRDAOLsUgwJSGlFKUaBVLMmgWR0AFTUoa1kUcdX2UKGgGaAloD0MIB5s6j4ovK8CUhpRSlGgVSzJoFkdAA/ZntfG+9XV9lChoBmgJaA9DCEFGQIUjYCfAlIaUUpRoFUsyaBZHQAKakIomXw91fZQoaAZoCWgPQwiCixU1mMYZwJSGlFKUaBVLMmgWR0ALOCuloDgZdX2UKGgGaAloD0MIYw6CjlaFGMCUhpRSlGgVSzJoFkdACdiWE9Mbm3V9lChoBmgJaA9DCMEffv57kDDAlIaUUpRoFUsyaBZHQAh/foA4n4R1fZQoaAZoCWgPQwjKwWwCDL8wwJSGlFKUaBVLMmgWR0AHIJJGvwEydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ae30edbd170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ae30ee9bd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680813744060435000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzCInaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+InaE+7nsGvIcHOz+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMAWTDD1kFKs/MnW/v/mTvb9O1r0/TPuuP4VNgL/3voa+Qxm0P9IRDb9PUgA/9xknP5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2CInaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2InaE+7nsGvIcHOz+CvNw9UW6bu5f1mj2UdJRidS4=", "achieved_goal": "[[ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]\n [ 0.315655 -0.00820826 0.7305836 ]]", "desired_goal": "[[ 0.0343199 1.3365598 -1.495764 ]\n [-1.4810783 1.4831026 1.367044 ]\n [-1.0023657 -0.2631757 1.4070209 ]\n [-0.55105317 0.5012559 0.65273994]]", "observation": "[[ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]\n [ 0.315655 -0.00820826 0.7305836 0.10778143 -0.00474338 0.07566374]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMH3hmTxGOt49WMJZPlG9WLxpkOm9shJuPuRNwz21dX29sW95PvYA1jttChi+GiSUPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01878428 0.10850959 0.21265543]\n [-0.01322873 -0.11404497 0.23249319]\n [ 0.09536341 -0.06187983 0.24359013]\n [ 0.00653088 -0.14847727 0.28933793]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/tZOlITkJ8CUhpRSlIwBbJRLMowBdJRHQC8OqkuYhMd1fZQoaAZoCWgPQwi31EFeDx4lwJSGlFKUaBVLMmgWR0Aus2itaIN3dX2UKGgGaAloD0MIVB7dCIu6JMCUhpRSlGgVSzJoFkdALlk8aGYa53V9lChoBmgJaA9DCCKOdXEbhTLAlIaUUpRoFUsyaBZHQC3+gJ1JUYN1fZQoaAZoCWgPQwjll8EYkbAjwJSGlFKUaBVLMmgWR0AwGcvduYQbdX2UKGgGaAloD0MI5Gn5gavUJMCUhpRSlGgVSzJoFkdAL9iG34Kx93V9lChoBmgJaA9DCNuIJ7uZOSvAlIaUUpRoFUsyaBZHQC99Drqt5lh1fZQoaAZoCWgPQwijIeNRKvkgwJSGlFKUaBVLMmgWR0AvIwRoRIz4dX2UKGgGaAloD0MItr3dkhwAHMCUhpRSlGgVSzJoFkdAMLG87IT4+XV9lChoBmgJaA9DCPhQoiWPdybAlIaUUpRoFUsyaBZHQDCEo/iYLLJ1fZQoaAZoCWgPQwgGKuPfZ5QgwJSGlFKUaBVLMmgWR0AwV3PiT+vRdX2UKGgGaAloD0MIweRGkbV2KcCUhpRSlGgVSzJoFkdAMCodIXj2jHV9lChoBmgJaA9DCDl/EwoRWCLAlIaUUpRoFUsyaBZHQDFEzEaVD8d1fZQoaAZoCWgPQwgTC3xFt74mwJSGlFKUaBVLMmgWR0AxFzWf9P1tdX2UKGgGaAloD0MI8SkAxjNYJcCUhpRSlGgVSzJoFkdAMOmQwK0D2nV9lChoBmgJaA9DCNTX8zXLlR7AlIaUUpRoFUsyaBZHQDC8t16mfoR1fZQoaAZoCWgPQwjrAIi7eoUcwJSGlFKUaBVLMmgWR0Ax2oDgZTAGdX2UKGgGaAloD0MIDYtR19oTIsCUhpRSlGgVSzJoFkdAMa1ar3j+73V9lChoBmgJaA9DCACpTZzc5yPAlIaUUpRoFUsyaBZHQDGACT2WY4R1fZQoaAZoCWgPQwjw2xDjNd8dwJSGlFKUaBVLMmgWR0AxUq+Jxeb/dX2UKGgGaAloD0MIQdgpVg1aKsCUhpRSlGgVSzJoFkdAMmYmw7kn1HV9lChoBmgJaA9DCPkRv2INFyjAlIaUUpRoFUsyaBZHQDI4jxCpm291fZQoaAZoCWgPQwgTJ/c7FP0mwJSGlFKUaBVLMmgWR0AyCtmL9/BndX2UKGgGaAloD0MI6KIh41H6JMCUhpRSlGgVSzJoFkdAMd2criEQG3V9lChoBmgJaA9DCF5LyAc9cyDAlIaUUpRoFUsyaBZHQDMGw8nuy/t1fZQoaAZoCWgPQwi6opQQrAomwJSGlFKUaBVLMmgWR0Ay2U0elsP8dX2UKGgGaAloD0MIPlsHB3s7IsCUhpRSlGgVSzJoFkdAMqvIKc/dI3V9lChoBmgJaA9DCGluhbAaOyPAlIaUUpRoFUsyaBZHQDJ+nXNC7bt1fZQoaAZoCWgPQwgcX3tmSbgowJSGlFKUaBVLMmgWR0Azm3Td+G47dX2UKGgGaAloD0MI+itkrgzSKsCUhpRSlGgVSzJoFkdAM23XumaYu3V9lChoBmgJaA9DCKCM8WH2iiHAlIaUUpRoFUsyaBZHQDNANpdrwfB1fZQoaAZoCWgPQwjq6/ma5WolwJSGlFKUaBVLMmgWR0AzEwQUYbbUdX2UKGgGaAloD0MIZLDiVGstNMCUhpRSlGgVSzJoFkdANCapkwvg33V9lChoBmgJaA9DCIvG2t/ZzhzAlIaUUpRoFUsyaBZHQDP5E7W/ag51fZQoaAZoCWgPQwhIFjCBWy8gwJSGlFKUaBVLMmgWR0Azy1qnFYMfdX2UKGgGaAloD0MIfIFZoUh7NcCUhpRSlGgVSzJoFkdAM54BNmDlHXV9lChoBmgJaA9DCNaoh2h0jynAlIaUUpRoFUsyaBZHQDSxf6XSjQB1fZQoaAZoCWgPQwio4sYt5r8gwJSGlFKUaBVLMmgWR0A0g+Eh7mdRdX2UKGgGaAloD0MIQgqeQq7kIsCUhpRSlGgVSzJoFkdANFYn0Cih4HV9lChoBmgJaA9DCDVgkPRpJSHAlIaUUpRoFUsyaBZHQDQo1EVnEl51fZQoaAZoCWgPQwhf8GlOXsQlwJSGlFKUaBVLMmgWR0A1Pi1iONo8dX2UKGgGaAloD0MIBTI7i95hMMCUhpRSlGgVSzJoFkdANRCQDFId2nV9lChoBmgJaA9DCDV9dsB1yTLAlIaUUpRoFUsyaBZHQDTi1E3Kji51fZQoaAZoCWgPQwiLpx5pcEMmwJSGlFKUaBVLMmgWR0A0tfJ3gUDddX2UKGgGaAloD0MI+BbWjXcfJsCUhpRSlGgVSzJoFkdANdF7D2rXDnV9lChoBmgJaA9DCL5MFCF1uyzAlIaUUpRoFUsyaBZHQDWj779AHFB1fZQoaAZoCWgPQwhYc4Bgju4ZwJSGlFKUaBVLMmgWR0A1dlaKUFB6dX2UKGgGaAloD0MIXi7iOzG7K8CUhpRSlGgVSzJoFkdANUkCA+Y+jnV9lChoBmgJaA9DCFnEsMOYjCjAlIaUUpRoFUsyaBZHQDZhFH8TBZZ1fZQoaAZoCWgPQwjWxtgJL5EjwJSGlFKUaBVLMmgWR0A2M6v7m+0xdX2UKGgGaAloD0MIaHVyhuJeIcCUhpRSlGgVSzJoFkdANgYUSIxgzHV9lChoBmgJaA9DCCKphZLJKTLAlIaUUpRoFUsyaBZHQDXY371qWTp1fZQoaAZoCWgPQwg02qokslckwJSGlFKUaBVLMmgWR0A27ECvHLiddX2UKGgGaAloD0MI8Ief/x5IMMCUhpRSlGgVSzJoFkdANr6eK8+Ro3V9lChoBmgJaA9DCJXx7zMuQDnAlIaUUpRoFUsyaBZHQDaQ7IT4+KV1fZQoaAZoCWgPQwi/KaxUUHUxwJSGlFKUaBVLMmgWR0A2Y5HVf/m1dX2UKGgGaAloD0MIE2VvKeejI8CUhpRSlGgVSzJoFkdAN3jv/io86nV9lChoBmgJaA9DCDp4JjRJxCfAlIaUUpRoFUsyaBZHQDdLdvbXYlJ1fZQoaAZoCWgPQwicNA2K5t03wJSGlFKUaBVLMmgWR0A3HeEqUeMidX2UKGgGaAloD0MIi90+q8wkJ8CUhpRSlGgVSzJoFkdANvCwnpjc23V9lChoBmgJaA9DCPQ2NjtSrR7AlIaUUpRoFUsyaBZHQDgH4DcM3Id1fZQoaAZoCWgPQwjtEWqGVCkjwJSGlFKUaBVLMmgWR0A32m9QGfPHdX2UKGgGaAloD0MIJSL8i6AxJcCUhpRSlGgVSzJoFkdAN6zJp35eq3V9lChoBmgJaA9DCHMtWoC2qTXAlIaUUpRoFUsyaBZHQDd/iLl3hXN1fZQoaAZoCWgPQwgvhQfNrvMhwJSGlFKUaBVLMmgWR0A4lqNp/PPcdX2UKGgGaAloD0MIo5Ol1vsVLcCUhpRSlGgVSzJoFkdAOGksFt8/lnV9lChoBmgJaA9DCJVm8zgMBiTAlIaUUpRoFUsyaBZHQDg7iLl3hXN1fZQoaAZoCWgPQwgPnDOitC8wwJSGlFKUaBVLMmgWR0A4DkAPuogndX2UKGgGaAloD0MIhel7DcEZJcCUhpRSlGgVSzJoFkdAOSsNYr8R+XV9lChoBmgJaA9DCBOAf0qVrDHAlIaUUpRoFUsyaBZHQDj9httQ9A51fZQoaAZoCWgPQwj1SlmGOK4mwJSGlFKUaBVLMmgWR0A4z+FlCkXUdX2UKGgGaAloD0MIW+1hLxRwG8CUhpRSlGgVSzJoFkdAOKKOT7l7t3V9lChoBmgJaA9DCFA0D2CRLzXAlIaUUpRoFUsyaBZHQDm/3Fkxyn11fZQoaAZoCWgPQwj3yrxV1+kowJSGlFKUaBVLMmgWR0A5kj7ALy+YdX2UKGgGaAloD0MIM25qoPmUL8CUhpRSlGgVSzJoFkdAOWSKNyYG+3V9lChoBmgJaA9DCLwkzoqoaSfAlIaUUpRoFUsyaBZHQDk3TfBN21V1fZQoaAZoCWgPQwiM9nghHbYkwJSGlFKUaBVLMmgWR0A6SIbwSamXdX2UKGgGaAloD0MI3J212y4UJcCUhpRSlGgVSzJoFkdAOhr70nPVu3V9lChoBmgJaA9DCA9iZwqdbyPAlIaUUpRoFUsyaBZHQDntcW0qpcZ1fZQoaAZoCWgPQwj7Bbth2wItwJSGlFKUaBVLMmgWR0A5wE8JUo8ZdX2UKGgGaAloD0MIq7AZ4IJYMMCUhpRSlGgVSzJoFkdAOtKPfbblBHV9lChoBmgJaA9DCEHYKVYNMh7AlIaUUpRoFUsyaBZHQDqlKoQ4CIV1fZQoaAZoCWgPQwjaO6OtSqIdwJSGlFKUaBVLMmgWR0A6d5vLowEhdX2UKGgGaAloD0MIISHKF7TQGMCUhpRSlGgVSzJoFkdAOkp3os7MgXV9lChoBmgJaA9DCGVVhJuM2iXAlIaUUpRoFUsyaBZHQDtnRc/t6X11fZQoaAZoCWgPQwh0mgXaHaIfwJSGlFKUaBVLMmgWR0A7OcophF3IdX2UKGgGaAloD0MIhgDg2LNXGcCUhpRSlGgVSzJoFkdAOwyEQGwA2nV9lChoBmgJaA9DCINMMnIWni3AlIaUUpRoFUsyaBZHQDrfK6nR9gF1fZQoaAZoCWgPQwg5tTNMbT0ywJSGlFKUaBVLMmgWR0A7+WmP5pJxdX2UKGgGaAloD0MI8MLWbOVVKMCUhpRSlGgVSzJoFkdAO8vek56t1nV9lChoBmgJaA9DCAcnol9bDx/AlIaUUpRoFUsyaBZHQDueLYPGyX51fZQoaAZoCWgPQwjI0RxZ+fUqwJSGlFKUaBVLMmgWR0A7cPgNwzcidX2UKGgGaAloD0MIuI/cmnQ3McCUhpRSlGgVSzJoFkdAPIdA9mpVCHV9lChoBmgJaA9DCGN/2T15GBzAlIaUUpRoFUsyaBZHQDxaH58BuGd1fZQoaAZoCWgPQwi4V+atum4uwJSGlFKUaBVLMmgWR0A8LIV/MGHIdX2UKGgGaAloD0MI/Yf029dhL8CUhpRSlGgVSzJoFkdAO/8lLOAy23V9lChoBmgJaA9DCMQI4dHGsSDAlIaUUpRoFUsyaBZHQD0PHktEofF1fZQoaAZoCWgPQwjsaBzqdykgwJSGlFKUaBVLMmgWR0A84bR4QjD9dX2UKGgGaAloD0MI4Eigwaa2JcCUhpRSlGgVSzJoFkdAPLP/m1YyPHV9lChoBmgJaA9DCJaYZyWtSCLAlIaUUpRoFUsyaBZHQDyGwB5ooNN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -18.8073762729764, "std_reward": 3.6472662395638356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T20:42:56.466434"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3731
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f40d581af818a25f25f3f4d442dd42d769a242647c6be080abcfc3bcac1f679b
|
3 |
size 3731
|