metadata
license: mit
base_model: DTAI-KULeuven/robbert-2023-dutch-large
tags:
- generated_from_trainer
model-index:
- name: robbert-2023-dutch-large-ft-lcn
results: []
robbert-2023-dutch-large-ft-lcn
This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4819 | 1.0 | 69 | 2.1984 |
2.1774 | 2.0 | 138 | 2.1685 |
2.0555 | 3.0 | 207 | 2.1070 |
1.9779 | 4.0 | 276 | 2.0563 |
1.9261 | 5.0 | 345 | 2.0365 |
1.8381 | 6.0 | 414 | 2.0416 |
1.8136 | 7.0 | 483 | 2.0397 |
1.7682 | 8.0 | 552 | 2.0639 |
1.7484 | 9.0 | 621 | 2.0264 |
1.6742 | 10.0 | 690 | 2.0665 |
1.6311 | 11.0 | 759 | 2.0448 |
1.5907 | 12.0 | 828 | 2.0722 |
1.5301 | 13.0 | 897 | 1.9631 |
1.5052 | 14.0 | 966 | 2.0467 |
1.4834 | 15.0 | 1035 | 1.9810 |
1.4219 | 16.0 | 1104 | 2.0255 |
1.4029 | 17.0 | 1173 | 2.0746 |
1.3628 | 18.0 | 1242 | 1.9811 |
1.3356 | 19.0 | 1311 | 2.0329 |
1.3028 | 20.0 | 1380 | 2.0039 |
1.2955 | 21.0 | 1449 | 1.9837 |
1.2231 | 22.0 | 1518 | 1.9871 |
1.2093 | 23.0 | 1587 | 2.0143 |
1.1945 | 24.0 | 1656 | 1.9659 |
1.1657 | 25.0 | 1725 | 2.0569 |
1.1369 | 26.0 | 1794 | 1.9878 |
1.0946 | 27.0 | 1863 | 2.0062 |
1.063 | 28.0 | 1932 | 2.0421 |
1.0521 | 29.0 | 2001 | 2.0320 |
1.0443 | 30.0 | 2070 | 2.0580 |
1.0325 | 31.0 | 2139 | 1.9606 |
0.9804 | 32.0 | 2208 | 2.1121 |
0.9674 | 33.0 | 2277 | 2.0156 |
0.9563 | 34.0 | 2346 | 2.0292 |
0.927 | 35.0 | 2415 | 2.0528 |
0.9236 | 36.0 | 2484 | 1.9851 |
0.9319 | 37.0 | 2553 | 2.0392 |
0.8921 | 38.0 | 2622 | 2.0334 |
0.8742 | 39.0 | 2691 | 2.0492 |
0.8955 | 40.0 | 2760 | 1.9491 |
Framework versions
- Transformers 4.31.0
- Pytorch 1.11.0+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3