Use the model
from transformers import BertTokenizer, BertForMaskedLM
import torch
# Load the tokenizer
tokenizer = BertTokenizer.from_pretrained('btqkhai/SinoNomBERT')
# Load the model
model = BertForMaskedLM.from_pretrained('btqkhai/SinoNomBERT')
text = '大 [MASK] 百 官 其 𢮿 花 供 饌 皆 用 新 禮'
inputs = tokenizer(text, return_tensors="pt")
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
# Ground Truth: 宴
logits = model(**inputs).logits
mask_token_logits = logits[0, mask_token_index, :]
print("Predicted word:", tokenizer.decode(mask_token_logits[0].argmax()))
- Downloads last month
- 102
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for btqkhai/SinoNomBERT
Base model
Jihuai/bert-ancient-chinese